277 research outputs found
Muon Catalyzed Fusion in 3 K Solid Deuterium
Muon catalyzed fusion in deuterium has traditionally been studied in gaseous
and liquid targets. The TRIUMF solid-hydrogen-layer target system has been used
to study the fusion reaction rates in the solid phase of D_2 at a target
temperature of 3 K. Products of two distinct branches of the reaction were
observed; neutrons by a liquid organic scintillator, and protons by a silicon
detector located inside the target system. The effective molecular formation
rate from the upper hyperfine state of and the hyperfine transition
rate have been measured: , and .
The molecular formation rate is consistent with other recent measurements, but
not with the theory for isolated molecules. The discrepancy may be due to
incomplete thermalization, an effect which was investigated by Monte Carlo
calculations. Information on branching ratio parameters for the s and p wave
d+d nuclear interaction has been extracted.Comment: 19 pages, 11 figures, submitted to PRA Feb 20, 199
Design and operation of a cryogenic charge-integrating preamplifier for the MuSun experiment
The central detector in the MuSun experiment is a pad-plane time projection
ionization chamber that operates without gas amplification in deuterium at 31
K; it is used to measure the rate of the muon capture process . A new charge-sensitive preamplifier, operated at
140 K, has been developed for this detector. It achieved a resolution of 4.5
keV(D) or 120 RMS with zero detector capacitance at 1.1 s
integration time in laboratory tests. In the experimental environment, the
electronic resolution is 10 keV(D) or 250 RMS at a 0.5 s
integration time. The excellent energy resolution of this amplifier has enabled
discrimination between signals from muon-catalyzed fusion and muon capture on
chemical impurities, which will precisely determine systematic corrections due
to these processes. It is also expected to improve the muon tracking and
determination of the stopping location.Comment: 18 pages + title page, 13 figures, to be submitted to JINST; minor
corrections, added one reference, updated author lis
Measurement of the Resonant Molecular Formation Rate in Solid HD
Measurements of muon-catalyzed dt fusion () in solid
HD have been performed. The theory describing the energy dependent resonant
molecular formation rate for the reaction + HD is
compared to experimental results in a pure solid HD target. Constraints on the
rates are inferred through the use of a Monte Carlo model developed
specifically for the experiment. From the time-of- flight analysis of fusion
events in 16 and 37 targets, an average formation rate
consistent with 0.897(0.046) (0.166) times the
theoretical prediction was obtained.Comment: 4 pages, 5 figure
Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant to Part-per-Million Precision
We report a measurement of the positive muon lifetime to a precision of 1.0
parts per million (ppm); it is the most precise particle lifetime ever
measured. The experiment used a time-structured, low-energy muon beam and a
segmented plastic scintillator array to record more than 2 x 10^{12} decays.
Two different stopping target configurations were employed in independent
data-taking periods. The combined results give tau_{mu^+}(MuLan) =
2196980.3(2.2) ps, more than 15 times as precise as any previous experiment.
The muon lifetime gives the most precise value for the Fermi constant:
G_F(MuLan) = 1.1663788 (7) x 10^-5 GeV^-2 (0.6 ppm). It is also used to extract
the mu^-p singlet capture rate, which determines the proton's weak induced
pseudoscalar coupling g_P.Comment: Accepted for publication in Phys. Rev. Let
- …