273 research outputs found
Examining Trademark Counterfeiting Legislation, Free Trade Zones, Corruption and Culture in the Context of Illicit Trade: The United States and United Arab Emirates
Article published in the Michigan State International Law Review
The Crime of Product Counterfeiting: A Legal Analysis of the Usage of State-Level Statutes
This legal analysis of the state-level trademark counterfeiting criminal enforcement framework in the United States (“U.S.”) scrutinizes the use and non-use of state statutes to prosecute and convict trademark counterfeiters. Relying on state-level appellate court cases and conviction data, we found: (1) states inconsistently use and interpret criminal anti-counterfeiting statutes across the U.S.; and (2) strategies for building evidence in trademark counterfeiting criminal cases are strongest when based on cooperation with the victim (trademark owner). Based on our findings, to improve state-level anti-counterfeiting efforts, we recommend several best practices: Adoption of specific criminal trademark counterfeiting statutes if states do not already have a statute; Continued involvement and testimony by brand owners to distinguish between counterfeit and genuine product; and Continued and expanded collaboration and educational efforts between law enforcement, prosecutors, private investigators, and brand owners regarding trademark counterfeiting, as well as the potential danger to the health and safety of the public and possible connections to organized crime and terrorism
Differential cross sections for muonic atom scattering from hydrogenic molecules
The differential cross sections for low-energy muonic hydrogen atom
scattering from hydrogenic molecules are directly expressed by the
corresponding amplitudes for muonic atom scattering from hydrogen-isotope
nuclei. The energy and angular dependence of these three-body amplitudes is
thus taken naturally into account in scattering from molecules, without
involving any pseudopotentials. Effects of the internal motion of nuclei inside
the target molecules are included for every initial rotational-vibrational
state. These effects are very significant as the considered three-body
amplitudes often vary strongly within the energy interval eV.
The differential cross sections, calculated using the presented method, have
been successfully used for planning and interpreting many experiments in
low-energy muon physics. Studies of nuclear capture in and the
measurement of the Lamb shift in atoms created in H gaseous targets
are recent examples.Comment: 21 pages, 13 figures, submitted to Phys. Rev.
Design and operation of a cryogenic charge-integrating preamplifier for the MuSun experiment
The central detector in the MuSun experiment is a pad-plane time projection
ionization chamber that operates without gas amplification in deuterium at 31
K; it is used to measure the rate of the muon capture process . A new charge-sensitive preamplifier, operated at
140 K, has been developed for this detector. It achieved a resolution of 4.5
keV(D) or 120 RMS with zero detector capacitance at 1.1 s
integration time in laboratory tests. In the experimental environment, the
electronic resolution is 10 keV(D) or 250 RMS at a 0.5 s
integration time. The excellent energy resolution of this amplifier has enabled
discrimination between signals from muon-catalyzed fusion and muon capture on
chemical impurities, which will precisely determine systematic corrections due
to these processes. It is also expected to improve the muon tracking and
determination of the stopping location.Comment: 18 pages + title page, 13 figures, to be submitted to JINST; minor
corrections, added one reference, updated author lis
Measurement of the Resonant Molecular Formation Rate in Solid HD
Measurements of muon-catalyzed dt fusion () in solid
HD have been performed. The theory describing the energy dependent resonant
molecular formation rate for the reaction + HD is
compared to experimental results in a pure solid HD target. Constraints on the
rates are inferred through the use of a Monte Carlo model developed
specifically for the experiment. From the time-of- flight analysis of fusion
events in 16 and 37 targets, an average formation rate
consistent with 0.897(0.046) (0.166) times the
theoretical prediction was obtained.Comment: 4 pages, 5 figure
Muon Catalyzed Fusion in 3 K Solid Deuterium
Muon catalyzed fusion in deuterium has traditionally been studied in gaseous
and liquid targets. The TRIUMF solid-hydrogen-layer target system has been used
to study the fusion reaction rates in the solid phase of D_2 at a target
temperature of 3 K. Products of two distinct branches of the reaction were
observed; neutrons by a liquid organic scintillator, and protons by a silicon
detector located inside the target system. The effective molecular formation
rate from the upper hyperfine state of and the hyperfine transition
rate have been measured: , and .
The molecular formation rate is consistent with other recent measurements, but
not with the theory for isolated molecules. The discrepancy may be due to
incomplete thermalization, an effect which was investigated by Monte Carlo
calculations. Information on branching ratio parameters for the s and p wave
d+d nuclear interaction has been extracted.Comment: 19 pages, 11 figures, submitted to PRA Feb 20, 199
- …