12 research outputs found

    Synthesis and Crystallization Studies of Thermo-plastic Polyster/Titania Nanocomposites

    Get PDF
    The present work reports the non-isothermal crystallization kinetics of PET-TiO2 nanocomposites. The average particle size of TiO2 nanoparticles, prepared by chemical route, has been calculated 32 nm using Debay-Scherrer’s formula in XRD peaks. PET-TiO2 nanocomposites have been synthesized using solution casting method. The investigation of non-isothermal crystallization behavior has been conducted by means of Differential Scanning Calorimeter (DSC). The crystallization temperature shift to lower temperature for both PET pristine and PET-TiO2 nanocomposites due to decrease in mobility of chain segments and heterogeneous nucleation. Also, the inclusion of TiO2 nanoparticles may accelerate nucleation rate in nanocomposites that causes the crystallization time and absolute crystallinity fraction. The thermal conductivity of inorganic filler TiO2 nanoparticles may affect the crystallization temperature

    An efficient one pot three-component nanocatalyzed synthesis of spiroheterocycles using TiO2 nanoparticles as a heterogeneous catalyst

    No full text
    An efficient and environmentally benign isocyanide based domino protocol has been presented for the synthesis of structurally diverse spiroheterocycles, spiroannulated with imidazothiazole and imidazothiadiazole, involving the three component reaction of 2-aminobenzothiazole/2-amino-1,3,4-thiadiazole, cyclohexyl/tert-butyl isocyanides and isatines/cyclic carbonyl compounds catalyzed by recyclable and reusable nanocrystalline TiO2

    Facile synthesis of Pd@ZnO core@shell nanoparticles for selective ethanol detection

    No full text
    In this work, we reported a high-performance ethanol gas sensor based on novel Pd@ZnO core@shell nanoparticles (CSNPs). The Pd@ZnO CSNPs were synthesized by chemical method and characterized by XRD, TEM and EDS techniques. Gas sensing results demonstrated that Pd@ZnO CSNPs show high sensitivity and remarkable selectivity towards ethanol at 250 °C. The response value of Pd@ZnO CSNPs is 152, which is almost six times higher than the response value (27) of ZnO NPs at 250 °C. The mechanism of enhancement in sensing properties can be ascribed to the chemical and electronic sensitization effect of Pd NPs and also due to the unique core@shell structure. These characteristics may shed light on the development of a selective ethanol sensor based on Pd@ZnO CSNPs
    corecore