421 research outputs found

    Design of integrated pitch axis for autopilot/autothrottle and integrated lateral axis for autopilot/yaw damper for NASA TSRV airplane using integral LQG methodology

    Get PDF
    Two designs are presented for control systems for the NASA Transport System Research Vehicle (TSRV) using integral Linear Quadratic Gaussian (LQG) methodology. The first is an integrated longitudinal autopilot/autothrottle design and the second design is an integrated lateral autopilot/yaw damper/sideslip controller design. It is shown that a systematic top-down approach to a complex design problem combined with proper application of modern control synthesis techniques yields a satisfactory solution in a reasonable period of time

    Cosmic ray modulation by high-speed solar wind fluxes

    Get PDF
    Cosmic ray intensity variations connected with recurrent high-speed fluxes (HSF) of solar wind are investigated. The increase of intensity before the Earth gets into a HSF, north-south anisotropy and diurnal variation of cosmic rays inside a HSF as well as the characteristics of Forbush decreases are considered

    Assessing post-traumatic stress disorder in South African adolescents: using the child and adolescent trauma survey (CATS) as a screening tool

    Get PDF
    BACKGROUND: Several studies have demonstrated that South African children and adolescents are exposed to high levels of violent trauma with a significant proportion developing PTSD, however, limited resources make it difficult to accurately identify traumatized children. METHODS: A clinical interview (K-SADS-PL, selected modules) and self-report scale (CATS) were compared to determine if these different methods of assessment elicit similar information with regards to trauma exposure and post-traumatic stress disorder (PTSD) in adolescents. Youth (n = 58) from 2 schools in Cape Town, South Africa participated. RESULTS: 91% of youth reported having been exposed to a traumatic event on self-report (CATS) and 38% reported symptoms severe enough to be classified as PTSD. On interview (K-SADS-PL), 86% reported exposure to a traumatic event and 19% were found to have PTSD. While there were significant differences in the rates of trauma exposure and PTSD on the K-SADS and CATS, a cut-off value of 15 on the CATS maximized both the number of true positives and true negatives with PTSD. The CATS also differentiated well between adolescents meeting DSM-IV PTSD symptom criteria from adolescents not meeting criteria. CONCLUSIONS: Our results indicate that trauma exposure and PTSD are prevalent in South African youth and if appropriate cut-offs are used, self-report scales may be useful screening tools for PTSD

    On the Development and Pre-Flight Testing of the Affordable Guided Airdrop System for G-12 Cargo Parachute

    Get PDF
    16th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar, Boston, MA, May 21-24, 2001

    Performance, Control, and Simulation of the Affordable Guided Airdrop System

    Get PDF
    This paper addresses the development of an autonomous guidance, navigation and control system for a flat solid circular parachute. This effort is a part of the Affordable Guided Airdrop System (AGAS) that integrates a low-cost guidance and control system into fielded cargo air delivery systems. The paper describes the AGAS concept, its architecture and components. It then reviews the literature on circular parachute modeling and introduces a simplified model of a parachute. This model is used to develop and evaluate the performance of a modified bang-bang control system to steer the AGAS along a pre-specified trajectory towards a desired landing point. The synthesis of the optimal control strategy based on Pontryagin's principle of optimality is also presented. The paper is intended to be a summary of the current state of AGAS development. The paper ends with the summary of the future plans in this area

    Controlling Cherenkov angles with resonance transition radiation

    Full text link
    Cherenkov radiation provides a valuable way to identify high energy particles in a wide momentum range, through the relation between the particle velocity and the Cherenkov angle. However, since the Cherenkov angle depends only on material's permittivity, the material unavoidably sets a fundamental limit to the momentum coverage and sensitivity of Cherenkov detectors. For example, Ring Imaging Cherenkov detectors must employ materials transparent to the frequency of interest as well as possessing permittivities close to unity to identify particles in the multi GeV range, and thus are often limited to large gas chambers. It would be extremely important albeit challenging to lift this fundamental limit and control Cherenkov angles as preferred. Here we propose a new mechanism that uses constructive interference of resonance transition radiation from photonic crystals to generate both forward and backward Cherenkov radiation. This mechanism can control Cherenkov angles in a flexible way with high sensitivity to any desired range of velocities. Photonic crystals thus overcome the severe material limit for Cherenkov detectors, enabling the use of transparent materials with arbitrary values of permittivity, and provide a promising option suited for identification of particles at high energy with enhanced sensitivity.Comment: There are 16 pages and 4 figures for the manuscript. Supplementary information with 18 pages and 5 figures, appended at the end of the file with the manuscript. Source files in Word format converted to PDF. Submitted to Nature Physic

    Maximal Spontaneous Photon Emission and Energy Loss from Free Electrons

    Full text link
    Free electron radiation such as Cerenkov, Smith--Purcell, and transition radiation can be greatly affected by structured optical environments, as has been demonstrated in a variety of polaritonic, photonic-crystal, and metamaterial systems. However, the amount of radiation that can ultimately be extracted from free electrons near an arbitrary material structure has remained elusive. Here we derive a fundamental upper limit to the spontaneous photon emission and energy loss of free electrons, regardless of geometry, which illuminates the effects of material properties and electron velocities. We obtain experimental evidence for our theory with quantitative measurements of Smith--Purcell radiation. Our framework allows us to make two predictions. One is a new regime of radiation operation---at subwavelength separations, slower (nonrelativistic) electrons can achieve stronger radiation than fast (relativistic) electrons. The second is a divergence of the emission probability in the limit of lossless materials. We further reveal that such divergences can be approached by coupling free electrons to photonic bound states in the continuum (BICs). Our findings suggest that compact and efficient free-electron radiation sources from microwaves to the soft X-ray regime may be achievable without requiring ultrahigh accelerating voltages.Comment: 7 pages, 4 figure

    Spawning rings of exceptional points out of Dirac cones

    Get PDF
    The Dirac cone underlies many unique electronic properties of graphene and topological insulators, and its band structure--two conical bands touching at a single point--has also been realized for photons in waveguide arrays, atoms in optical lattices, and through accidental degeneracy. Deformations of the Dirac cone often reveal intriguing properties; an example is the quantum Hall effect, where a constant magnetic field breaks the Dirac cone into isolated Landau levels. A seemingly unrelated phenomenon is the exceptional point, also known as the parity-time symmetry breaking point, where two resonances coincide in both their positions and widths. Exceptional points lead to counter-intuitive phenomena such as loss-induced transparency, unidirectional transmission or reflection, and lasers with reversed pump dependence or single-mode operation. These two fields of research are in fact connected: here we discover the ability of a Dirac cone to evolve into a ring of exceptional points, which we call an "exceptional ring." We experimentally demonstrate this concept in a photonic crystal slab. Angle-resolved reflection measurements of the photonic crystal slab reveal that the peaks of reflectivity follow the conical band structure of a Dirac cone from accidental degeneracy, whereas the complex eigenvalues of the system are deformed into a two-dimensional flat band enclosed by an exceptional ring. This deformation arises from the dissimilar radiation rates of dipole and quadrupole resonances, which play a role analogous to the loss and gain in parity-time symmetric systems. Our results indicate that the radiation that exists in any open system can fundamentally alter its physical properties in ways previously expected only in the presence of material loss and gain
    corecore