14 research outputs found

    Effect of Substrate Roughness on Oxidation Resistance of an Aluminized Ni-Base Superalloy

    Full text link
    In the present work, it is shown that the surface preparation method used on two Ni-based superalloys prior to aluminizing chemical vapor deposition (CVD) is one of the most important factors determining the oxidation resistance of aluminized Ni-based superalloys. It was found that grit blasting the substrate surface negatively affects the oxidation resistance of the aluminized coatings. For grit blasted and aluminized IN 625, a thicker outer NiAl coating was formed compared to that of IN 738. In contrast, no effect on NiAl coating thickness was found for grit blasted and aluminized IN 738. However, a thicker interdiffusion zone (IDZ) was observed. It was shown that the systems with grit-blasted surfaces reveal worse oxidation resistance during thermal shock tests, namely, a higher mass loss was observed for both grit blasted and aluminized alloys, as compared to ground and aluminized alloys. A possible reason for this effect of remaining alumina particles originating from surface grit blasting on the diffusion processes and stress distribution at the coating/substrate is proposed.Comment: Accepted manuscript Metals 201

    Influence of crystallographic orientation on creep resistance of single-crystal superalloy

    Get PDF
    This paper focuses on the influence of crystallographic orientation on creep resistance of CMSX-4 nickel-based superalloy. The single-crystal rods of CMSX-4 superalloy were manufactured with the use of the Bridgman method at a withdrawal rate of 3 mm/min. The crystallographic orientation of the rods was determined by the X-ray Ω-scan method with OD-EFG diffractometer and the Laue back-reflection technique. The creep tests were performed at a temperature of 982°C and the value of stress σ = 248 MPa. Microstructural investigation before and after the creep test of CMSX-4 superalloy was performed using a scanning electron microscope. The results showed that the distribution of the values of α angle strongly affects the creep resistance of a single-crystal superalloy

    Linear polyurethanes with imidazoquinazoline rings: preparation and properties evaluation

    Get PDF
    Abstract: In this work, research concerning the synthesis and properties of linear polyurethanes (PUs) with the imidazoquinazoline rings was represented. Reaction conditions of 2,6-bis(2-hydroxyethyl)-1-phenylimida-zo[1,5-c]quinazoline-3,5-dione (BHPIQ) with 1,6-hexamethylene diisocyanate were determined and optimized. These conditions are adapted to reaction of BHPIQ with 4,4′-diphenylmethane diisocyanate and 2,4-toluene diisocyanate. New PUs with imidazoquinazoline rings were characterized by spectral methods ( 1 H-NMR and IR spectroscopies), which confirm their structures. Their molar masses and dispersity index were measured by size exclusion chromatography method. The wide-angle X-ray scattering and differential scanning calorimetry (DSC) studies have shown that all PUs based on BHPIQ are amorphous. Moreover, thermal properties of PUs were investigated by thermogravimetry analysis, standard DSC, and temperature-modulated DSC methods. During thermogravimetric measurements, the exhaust gases were analyzed by FTIR method. Incorporation of imidazoquinazoline ring into the PU chains escalates their glass transition temperature; thus, their heat resistance was enhanced. Furthermore, their degradation rate and the amount of released degradation products were reduced. The investigated properties of the obtained PUs with imidazoquinazoline rings were compared with those ones of suitable PUs based on 1,4-butanediol. Graphical abstract: Linear polyurethanes were obtained in reaction of 1-phenyl-2,6-bis(2-hydroxyethylimidazo[1,5-c]quinazoline-3,5-dione with hexamethylene 1,6-diisocyanate, 4,4′-diphenylmethane diisocyanate and toluene 2,4-diisocyanate. Their composition and structure were confirmed. The phase contents and thermal properties were investigated[Figure not available: see fulltext.]. © 2019, The Author(s).DS budge

    The effect of withdrawal rate on crystal structure perfection, microstructure and creep resistance of single crystal castings made of CMSX-4 nickel-based superalloy

    Get PDF
    This study focuses on the evaluation of the crystal structure perfection in the single crystal made of CMSX-4 nickel superalloy and its effect on creep resistance. Single crystal castings were manufactured by directional solidification process at the withdrawal rate of 1, 3, 5 and 7 mm/min. Light (LM) and electron (SEM, TEM) microscopy, X-ray diffraction and Mossbauer spectroscopy were used for evaluation of the microstructure and crystal structure perfection. Castings were also subjected to creep tests. The best creep resistance was obtained for the casting manufactured at the withdrawal rate of 3 mm/min, characterized by the highest crystal structure perfection compared to the other castings examined

    Determination of crystal orientation by Ω-scan method in nickel-based single-crystal turbine blades

    Get PDF
    The article presents an assessment of the crystal perfection of single-crystal turbine blades based on the crystal orientation and lattice parameter distribution on their surface. Crystal orientation analysis was conducted by the X-ray diffraction method Ω-scan and the X-ray diffractometer provided by the EFG Company. The Ω-scan method was successfully used for evaluation of the crystal orientation and lattice parameters in semiconductors. A description of the Ω-scan method and an example of measurement of crystal orientation compared to the Laue and EBSD methods are presented.This work was supported by the National Science Centre Poland (NCN) under Grant No. Preludium-UMO-2016/21/N/ST8/00240

    Resistance to Cavitation Erosion and the Sliding Wear of MCrAlY and NiCrMo Metallic Coatings

    No full text
    Bulk cobalt- and nickel-based metallic materials exhibit superior resistance to cavitation erosion and sliding wear. Thus, thermally deposited High-Velocity Oxygen Fuel (HVOF) coatings seem promising for increasing the wear resistance of the bulk metal substrate. However, the effect of chemical composition on the cavitation erosion and sliding wear resistance of M(Co,Ni)CrAlY and NiCrMo coatings has not yet been exhaustively studied. In this study, High-Velocity Oxygen Fuel (HVOF) coatings such as CoNiCrAlY, NiCoCrAlY, and NiCrMoFeCo were deposited on AISI 310 (X15CrNi25-20) steel coupons. The microstructure, hardness, phase composition and surface morphology of the as-sprayed coatings were examined. Cavitation erosion tests were conducted using the vibratory method in accordance with the ASTM G32 standard. Sliding wear was examined with the use of a ball-on-disc tribometer, and friction coefficients were measured. The mechanism of wear was identified with the scanning electron microscope equipped with an energy dispersive spectroscopy (SEM-EDS) method. In comparison to the NiCrMoFeCo coating, the CoNiCrAlY and NiCoCrAlY coatings have a lower sliding and cavitation wear resistance

    Microstructure and Properties of As-Cast and Heat-Treated 2017A Aluminium Alloy Obtained from Scrap Recycling

    No full text
    The continuous increase in the consumption of aluminium and its alloys has led to an increase in the amount of aluminium scrap. Due to environmental protection, and to reduce the costs of manufacturing aluminum in recent years, a lot of research is devoted to recycling of aluminum alloys. The paper presents the results of research concerning the possibility of manufacturing standardized alloy 2017A from commercial and post-production scrap by continuous casting. Obtained from recycling process ingots were subjected to analysis of chemical composition and intermetallic phase composition. Based on the results of light microscopy (LM), scanning electron microscopy + electron dispersive spectroscopy (SEM + EDS), and X-ray diffraction (XRD) the following phases in the as-cast state were identified: θ-Al2Cu, β-Mg2Si, Al7Cu2Fe, Q-Al4Cu2Mg8Si7, and α-Al15(FeMn)3(SiCu)2. During solution heat treatment most of the primary precipitates of intermetallic phases, like θ-Al2Cu, β-Mg2Si, and Q-Al4Cu2Mg8Si7, were dissolved in the solid solution α-Al, and during natural and artificial aging they precipitate as strengthening phases θ-Al2Cu and Q-Al4Cu2Mg8Si7 with high dispersion. The highest hardness—150.3 HB—of 2017A alloy was obtained after solution heat treatment from 510 °C and aging at 175 °C. In the static tensile test the mechanical (Rm and Rp0.2) and plastic (A5) properties were determined for 2017A alloy in the cast state and after T4 heat treatment. The highest strength properties—tensile strength Rm = 450.5 MPa and yield strength R0.2 = 268.7 MPa with good relative elongation A5 = 14.65%, were obtained after solution heat treatment at 510 °C/6 h/water quenching and natural aging at 25 °C for 70 h. The alloy manufactured from recycled scrap is characterized by relatively high mechanical properties

    A method of increasing the accuracy of low-stiffness shafts: single-pass traverse grinding without steady rests

    No full text
    The article presents a method of increasing the shape and dimensional accuracy of low-stiffness shafts manufactured in a single pass of a grinding wheel in traverse grinding. One-pass manufacturing is one of the ways for reducing machining time and increasing efficiency, thus lowering production costs. However, maintaining the necessary accuracy proves to be a challenge because the whole machining allowance has to be removed at once, leaving no room for errors that could be fixed in additional passes of the tool. It is especially true in finishing operations, such as traverse grinding. In addition, grinding the workpiece in a single pass of a grinding wheel leads to high forces, which cause elastic deformation of the part. The lower the stiffness of the part, the more difficult it is to achieve the required accuracy. As a result, there are many methods of improving the accuracy of grinding such parts, but they tend to be either expensive or reduce the machining efficiency. Thus, it is important to seek new methods that would allow improving the accuracy of the machining without reducing its efficiency. The proposed method does not require using steady rests and is based on the measurement of the normal grinding force component. Knowing the value of the grinding force when grinding with a set grinding depth, the elastic deformation of the machine tool–tool–workpiece system is calculated in each position of the grinding wheel. Based on the calculated deformation, the additional infeed of the grinding wheel is implemented in order to stabilise real grinding depth and to increase the accuracy of the produced part. The experimental tests were conducted to prove the effectiveness of the proposed method

    The Effect of Superalloy Structure on Ultrasonic Wave Parameters

    No full text
    This paper analyses the nickel based superalloy Inconel 713C casts typically used in high and low pressure turbines of aircraft engines. The ingots were manufactured in the Research and Development Laboratory for Aerospace Materials at the Rzeszów University of Technology. The superalloy structures were analysed by the following methods: X-ray diffraction orientation measurement and ultrasonic wave propagation. Ultrasonic techniques are mainly used to measure the blade wall’s thickness. Measurement accuracy is determined by the velocity of the ultrasonic wave in the material tested. This work evaluates the effect of the nickel-based superalloy microstructure on the velocity of the ultrasonic wave propagation. Three different macrostructures: equiax (EQ), directionally solidified (DS) and single crystal (SX) were analysed. The authors determined the crystal misorientation in the obtained casts as the deviation of [001] crystallographic direction from the withdrawal axis or the main axis of the ingots. The measurements performed allowed researchers to identify significant differences in the wave velocity between EQ, DS and SX structures

    Influence of ion nitriding on microstructure and properties of Haynes 282 nickel superalloy specimens produced using DMLS technique

    Get PDF
    The paper investigates the influence of the ion-nitriding process on the microstructure, corrosion resistance, and tensile strength at elevated temperatures of Haynes 282 nickel superalloy specimens produced by the Direct Metal Laser Sintering (DMLS) technique. The study was performed for two conditions, i.e., as-built by DMLS method and as-built by DMLS method + covered by a layer containing CrN + Cr2N phases. An analysis of the surface morphology revealed that the ion-nitriding process significantly affects the physical and chemical phenomena occurring on the specimen’s surface. The XRD measurement of the specimens showed that preparing them with the DMLS method as well as following a nitriding process produced residual tensile stresses. Based on the measurement of the nanohardness distribution through the layer approximatively of 7 µm in width and the superalloys substrate, the results of the nanohardness showed the maximum values of 27 GPa and 13.5 GPa for the nitrided layer and the substrate, respectively. The surface protection from the nitrided layer proved a positive effect on the corrosion resistance of the DMLS specimens in the solution of 0.1 M Na2SO4 + 0.1 M NaCl at room temperature. The results of the tensile tests at 750 ◦C showed that the ion-nitriding process did not significantly affect the elevated-temperature tensile strength of the superalloy specimens produced with the DMLS technique.Web of Science1614art. no. 502
    corecore