6 research outputs found

    Variational Bayesian Inference for Source Separation and Robust Feature Extraction

    Get PDF
    International audienceWe consider the task of separating and classifying individual sound sources mixed together. The main challenge is to achieve robust classification despite residual distortion of the separated source signals. A promising paradigm is to estimate the uncertainty about the separated source signals and to propagate it through the subsequent feature extraction and classification stages. We argue that variational Bayesian (VB) inference offers a mathematically rigorous way of deriving uncertainty estimators, which contrasts with state-of-the-art estimators based on heuristics or on maximum likelihood (ML) estimation. We propose a general VB source separation algorithm, which makes it possible to jointly exploit spatial and spectral models of the sources. This algorithm achieves 6% and 5% relative error reduction compared to ML uncertainty estimation on the CHiME noise-robust speaker identification and speech recognition benchmarks, respectively, and it opens the way for more complex VB approximations of uncertainty.Dans cet article, nous considérons le problème de l'extraction des descripteurs de chaque source dans un enregistrement audio multi-sources à l'aide d'un algorithme général de séparation de sources. La difficulté consiste à estimer l'incertitude sur les sources et à la propager aux descripteurs, afin de les estimer de façon robuste en dépit des erreurs de séparation. Les méthodes de l'état de l'art estiment l'incertitude de façon heuristique, tandis que nous proposons d'intégrer sur les paramètres de l'algorithme de séparation de sources. Nous décrivons dans ce but une méthode d'inférence variationnelle bayésienne pour l'estimation de la distribution a posteriori des sources et nous calculons ensuite l'espérance des descripteurs par propagation de l'incertitude selon la méthode d'identification des moments. Nous évaluons la précision des descripteurs en terme d'erreur quadratique moyenne et conduisons des expériences de reconnaissance du locuteur afin d'observer la performance qui en découle pour un problème réel. Dans les deux cas, la méthode proposée donne les meilleurs résultats

    A machine learning approach to two-voice counterpoint composition.

    No full text

    A Binaural Steering Beamformer System for Enhancing a Moving Speech Source

    No full text
    In many daily life communication situations, several sound sources are simultaneously active. While normal-hearing listeners can easily distinguish the target sound source from interfering sound sources—as long as target and interferers are spatially or spectrally separated—and concentrate on the target, hearing-impaired listeners and cochlear implant users have difficulties in making such a distinction. In this article, we propose a binaural approach composed of a spatial filter controlled by a direction-of-arrival estimator to track and enhance a moving target sound. This approach was implemented on a real-time signal processing platform enabling experiments with test subjects in situ. To evaluate the proposed method, a data set of sound signals with a single moving sound source in an anechoic diffuse noise environment was generated using virtual acoustics. The proposed steering method was compared with a fixed (nonsteering) method that enhances sound from the frontal direction in an objective evaluation and subjective experiments using this database. In both cases, the obtained results indicated a significant improvement in speech intelligibility and quality compared with the unprocessed signal. Furthermore, the proposed method outperformed the nonsteering method

    Comparing Binaural Pre-processing Strategies II

    No full text
    Several binaural audio signal enhancement algorithms were evaluated with respect to their potential to improve speech intelligibility in noise for users of bilateral cochlear implants (CIs). 50% speech reception thresholds (SRT 50 ) were assessed using an adaptive procedure in three distinct, realistic noise scenarios. All scenarios were highly nonstationary, complex, and included a significant amount of reverberation. Other aspects, such as the perfectly frontal target position, were idealized laboratory settings, allowing the algorithms to perform better than in corresponding real-world conditions. Eight bilaterally implanted CI users, wearing devices from three manufacturers, participated in the study. In all noise conditions, a substantial improvement in SRT 50 compared to the unprocessed signal was observed for most of the algorithms tested, with the largest improvements generally provided by binaural minimum variance distortionless response (MVDR) beamforming algorithms. The largest overall improvement in speech intelligibility was achieved by an adaptive binaural MVDR in a spatially separated, single competing talker noise scenario. A no-pre-processing condition and adaptive differential microphones without a binaural link served as the two baseline conditions. SRT 50 improvements provided by the binaural MVDR beamformers surpassed the performance of the adaptive differential microphones in most cases. Speech intelligibility improvements predicted by instrumental measures were shown to account for some but not all aspects of the perceptually obtained SRT 50 improvements measured in bilaterally implanted CI users

    Comparing Binaural Pre-processing Strategies I

    No full text
    In a collaborative research project, several monaural and binaural noise reduction algorithms have been comprehensively evaluated. In this article, eight selected noise reduction algorithms were assessed using instrumental measures, with a focus on the instrumental evaluation of speech intelligibility. Four distinct, reverberant scenarios were created to reflect everyday listening situations: a stationary speech-shaped noise, a multitalker babble noise, a single interfering talker, and a realistic cafeteria noise. Three instrumental measures were employed to assess predicted speech intelligibility and predicted sound quality: the intelligibility-weighted signal-to-noise ratio, the short-time objective intelligibility measure, and the perceptual evaluation of speech quality. The results show substantial improvements in predicted speech intelligibility as well as sound quality for the proposed algorithms. The evaluated coherence-based noise reduction algorithm was able to provide improvements in predicted audio signal quality. For the tested single-channel noise reduction algorithm, improvements in intelligibility-weighted signal-to-noise ratio were observed in all but the nonstationary cafeteria ambient noise scenario. Binaural minimum variance distortionless response beamforming algorithms performed particularly well in all noise scenarios

    Disappearance of Biodiversity and Future of Our Foods

    No full text
    “I. Uluslararası Organik Tarım ve Biyoçeşitlilik Sempozyumu 27-29 Eylül Bayburt
    corecore