19 research outputs found

    Are JWST/NIRCam Color Gradients in the Lensed z = 2.3 Dusty Star-forming Galaxy El Anzuelo Due to Central Dust Attenuation or Inside-out Galaxy Growth?

    Get PDF
    Gradients in the mass-to-light ratio of distant galaxies impede our ability to characterize their size and compactness. The long-wavelength filters of JWST?s NIRCam offer a significant step forward. For galaxies at Cosmic Noon (z ? 2), this regime corresponds to the rest-frame near-infrared, which is less biased toward young stars and captures emission from the bulk of a galaxy?s stellar population. We present an initial analysis of an extraordinary lensed dusty star-forming galaxy at z = 2.3 behind the El Gordo cluster (z = 0.87), named El Anzuelo (?The Fishhook?) after its partial Einstein-ring morphology. The far-UV to near-IR spectral energy distribution suggests an intrinsic star formation rate of 81 yr 2 7 M 1 - ?+ - and dust attenuation AV ? 1.6, in line with other DSFGs on the star-forming main sequence. We develop a parametric lens model to reconstruct the source plane structure of dust imaged by the Atacama Large Millimeter/submillimeter Array, far-UV to optical light from Hubble, and near-IR imaging with 8 filters of JWST/NIRCam, as part of the Prime Extragalactic Areas for Reionization and Lensing Science program. The source-plane half-light radius is remarkably consistent from ?1 to 4.5 ?m, despite a clear color gradient where the inferred galaxy center is redder than the outskirts. We interpret this to be the result of both a radially decreasing gradient in attenuation and substantial spatial offsets between UV- and IR-emitting components. A spatial decomposition of the SED reveals modestly suppressed star formation in the inner kiloparsec, which suggests that we are witnessing the early stages of inside-out quenching

    SN H0pe: The First Measurement of H0H_0 from a Multiply-Imaged Type Ia Supernova, Discovered by JWST

    Full text link
    The first James Webb Space Telescope ({\it JWST}) Near InfraRed Camera (NIRCam) imaging in the field of the galaxy cluster PLCK G165.7+67.0 (z=0.35z=0.35) uncovered a Type Ia supernova (SN~Ia) at z=1.78z=1.78, called ``SN H0pe." Three different images of this one SN were detected as a result of strong gravitational lensing, each one traversing a different path in spacetime, thereby inducing a relative delay in the arrival of each image. Follow-up {\it JWST} observations of all three SN images enabled photometric and rare spectroscopic measurements of the two relative time delays. Following strict blinding protocols which oversaw a live unblinding and regulated post-unblinding changes, these two measured time delays were compared to the predictions of seven independently constructed cluster lens models to measure a value for the Hubble constant, H0=71.87.6+9.8H_0=71.8^{+9.8}_{-7.6}~km~s1^{-1}~Mpc1^{-1}. The range of admissible H0H_0 values predicted across the lens models limits further precision, reflecting the well-known degeneracies between lens model constraints and time delays. It has long been theorized that a way forward is to leverage a standard candle, however this has not been realized until now. For the first time, the lens models are evaluated by their agreement with the SN absolute magnification, breaking these degeneracies and producing our best estimate, H0=75.45.5+8.1H_0=75.4^{+8.1}_{-5.5}~km~s1^{-1}~Mpc1^{-1}. This is the first precision measurement of H0H_0 from a multiply-imaged SN~Ia, and provides a measurement in a rarely utilized redshift regime. This result agrees with other local universe measurements, yet exceeds the value of H0H_0 derived from the early Universe with 90%\gtrsim90\% confidence, increasing evidence of the Hubble tension. With the precision provided by only four more events, this approach could solidify this disagreement to >3σ>3\sigma.Comment: Submitted to ApJ. 22 pages, 7 Figure

    The JWST discovery of the triply imaged type Ia Supernova H0pe and observations of the galaxy cluster PLCK G165.7+67.0

    Get PDF
    A Type Ia supernova (SN) at z = 1.78 was discovered in James Webb Space Telescope Near Infrared Camera imaging of the galaxy cluster PLCK G165.7+67.0 (G165; z = 0.35). The SN is situated 1.5–2 kpc from the host-galaxy nucleus and appears in three different locations as a result of gravitational lensing by G165. These data can yield a value for Hubble's constant using time delays from this multiply imaged SN Ia that we call "SN H0pe." Over the cluster, we identified 21 image multiplicities, confirmed five of them using the Near-Infrared Spectrograph, and constructed a new lens model that gives a total mass within 600 kpc of (2.6 ± 0.3) × 1014M⊙. The photometry uncovered a galaxy overdensity coincident with the SN host galaxy. NIRSpec confirmed six member galaxies, four of which surround the SN host galaxy with relative velocity ≲900 km s−1 and projected physical extent ≲33 kpc. This compact galaxy group is dominated by the SN host galaxy, which has a stellar mass of (5.0 ± 0.1) × 1011M⊙. The group members have specific star formation rates of 2–260 Gyr−1 derived from the Hα-line fluxes corrected for stellar absorption, dust extinction, and slit losses. Another group centered on a strongly lensed dusty star-forming galaxy is at z = 2.24. The total (unobscured and obscured) SFR of this second galaxy group is estimated to be (≳ 100 M⊙ yr−1), which translates to a supernova rate of ∼1 SNe yr−1, suggesting that regular monitoring of this cluster may yield additional SNe.This paper is dedicated to PEARLS team member and collaborator Mario Nonino, whose enthusiasm for the science and generosity have been an inspiration for us. We thank the two anonymous referees for suggestions that greatly improved the manuscript. B.L.F. was funded by NASA JWST DD grant (PID 4446; PI: Frye) from the Space Telescope Science Institute (STScI). B.L.F. obtained student support through a Faculty Challenge Grant for Increasing Access to Undergraduate Research, and the Arthur L. and Lee G. Herbst Endowment for Innovation and the Science Deans Innovation and Education Fund, both obtained at the University of Arizona. R.A.W. was funded by NASA JWST Interdisciplinary Scientist grants NAG5- 12460, NNX14AN10G, and 80GNSSC18K0200 from NASA Goddard Space Flight Center. We thank the JWST Project at NASA GSFC and JWST Program at NASA HQ for their many decades long dedication to make the JWST mission a success. We especially thank Peter Zeidler, Patricia Royale, Tony Roman, and the JWST scheduling group at STScI for their continued dedicated support to get the JWST observations scheduled. This work is based on observations made with the NASA/ESA/CSA James Webb Space Telescope. The data were obtained from the Mikulski Archive for Space Telescopes (MAST) at the STScI, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-03127 for JWST. These observations are associated with JWST programs 1176 and 4446. This work is also based on observations made with the NASA/ESA Hubble Space Telescope. The data were obtained from the Barbara A. Mikulski Archive for Space Telescopes (MAST) at the STScI, which is operated by the Association of Universities for Research in Astronomy (AURA) Inc., under NASA contract NAS 5-26555 for HST

    A gravitationally unstable gas disk of a starburst galaxy 12 billion years ago

    Get PDF
    Submillimeter bright galaxies in the early Universe are vigorously forming stars at ~1000 times higher rate than the Milky Way. A large fraction of stars is formed in the central 1 kiloparsec region, that is comparable in size to massive, quiescent galaxies found at the peak of the cosmic star formation history, and eventually the core of giant elliptical galaxies in the present-day Universe. However, the physical and kinematic properties inside a compact starburst core are poorly understood because dissecting it requires angular resolution even higher than the Hubble Space Telescope can offer. Here we report 550 parsec-resolution observations of gas and dust in the brightest unlensed submillimeter galaxy at z=4.3. We map out for the first time the spatial and kinematic structure of molecular gas inside the heavily dust-obscured core. The gas distribution is clumpy while the underlying disk is rotation-supported. Exploiting the high-quality map of molecular gas mass surface density, we find a strong evidence that the starburst disk is gravitationally unstable, implying that the self-gravity of gas overcomes the differential rotation and the internal pressure by stellar radiation feedback. The observed molecular gas would be consumed by star formation in a timescale of 100 million years, that is comparable to those in merging starburst galaxies. Our results suggest that the most extreme starburst in the early Universe originates from efficient star formation due to a gravitational instability in the central 2 kpc region.Comment: Published in Nature on August 30 2018 (submitted version

    The JWST PEARLS View of the El Gordo galaxy cluster and of the structure it magnifies

    Get PDF
    We dedicate this study to the memory of Jill Bechtold, scholar and mentor, who with her great patience and investment in undergraduate and graduate education set many of us onto a career path in astronomy. We thank Sergey Cherkis for useful conversations and the anonymous referee for suggestions that improved the manuscript. B.L.F. obtained student support through a Faculty Challenge Grant for Increasing Access to Undergraduate Research and the Arthur L. and Lee G. Herbst Endowment for Innovation and the Science Deanʼs Innovation and Education Fund, both obtained at the University of Arizona. R.A.W. was funded by NASA JWST Interdisciplinary Scientist grants NAG5-12460, NNX14AN10G, and 80GNSSC18K0200 from NASA Goddard Space Flight Center. The BGU lensing group, L.J.F., and A.Z., acknowledge support by grant 2020750 from the United States–Israel Binational Science Foundation (BSF), grant 2109066 from the United States National Science Foundation (NSF), and the Ministry of Science & Technology, Israel. K.I.C. acknowledges funding from the Netherlands Research School for Astronomy (NOVA) and also from the Dutch Research Council (NWO), through the award of the Vici Grant VI.C.212.036. We thank the JWST Project at NASA GSFC and JWST Program at NASA HQ for their many-decades-long dedication to making the JWST mission a success. We especially thank Tony Roman, the JWST scheduling group, and Mission Operations Center staff at STScI for their continued dedicated support to getting the JWST observations scheduled. This work is based on observations made with the NASA/ESA/CSA James Webb Space Telescope. The data were obtained from the Mikulski Archive for Space Telescopes (MAST) at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-03127 for JWST. These observations are associated with JWST program 1176. This work is also based on observations made with the NASA/ESA Hubble Space Telescope (HST). The data were obtained from the Barbara A. Mikulski Archive for Space Telescopes (MAST) at the Space Telescope Science Institute (STScI), which is operated by the Associationof Universities for Research in Astronomy (AURA) Inc., under NASA contract NAS 5-26555 for HST. This research has made use of data obtained from the Chandra Data Archive and software provided by the Chandra X-ray Center (CXC) in the application package CIAO

    Are JWST/NIRCam color gradients in the lensed z=2.3 dusty star-forming galaxy El Anzuelo due to central dust attenuation or inside-out galaxy growth?

    Full text link
    Gradients in the mass-to-light ratio of distant galaxies impede our ability to characterize their size and compactness. The long-wavelength filters of JWSTJWST's NIRCam offer a significant step forward. For galaxies at Cosmic Noon (z2z\sim2), this regime corresponds to the rest-frame near-infrared, which is less biased towards young stars and captures emission from the bulk of a galaxy's stellar population. We present an initial analysis of an extraordinary lensed dusty star-forming galaxy (DSFG) at z=2.3z=2.3 behind the El GordoEl~Gordo cluster (z=0.87z=0.87), named El AnzueloEl~Anzuelo ("The Fishhook") after its partial Einstein-ring morphology. The FUV-NIR SED suggests an intrinsic star formation rate of 812+7 M yr181^{+7}_{-2}~M_\odot~{\rm yr}^{-1} and dust attenuation AV1.6A_V\approx 1.6, in line with other DSFGs on the star-forming main sequence. We develop a parametric lens model to reconstruct the source-plane structure of dust imaged by the Atacama Large Millimeter/submillimeter Array, far-UV to optical light from HubbleHubble, and near-IR imaging with 8 filters of JWSTJWST/NIRCam, as part of the Prime Extragalactic Areas for Reionization and Lensing Science (PEARLS) program. The source-plane half-light radius is remarkably consistent from 14.5 μ\sim 1-4.5~\mum, despite a clear color gradient where the inferred galaxy center is redder than the outskirts. We interpret this to be the result of both a radially-decreasing gradient in attenuation and substantial spatial offsets between UV- and IR-emitting components. A spatial decomposition of the SED reveals modestly suppressed star formation in the inner kiloparsec, which suggests that we are witnessing the early stages of inside-out quenching.Comment: 29 pages, 11 figures, 5 tables. Accepted for publication in Ap

    Magellanic System Stars Identified in the SMACS J0723.3-7327 JWST ERO Images

    Full text link
    We identify 68 distant stars in JWST/NIRCam ERO images of the field of galaxy cluster SMACS J0723.3-7327 (SMACS 0723). Given the relatively small (\sim1010^{\circ}) angular separation between SMACS 0723 and the Large Magellanic Cloud, it is likely that these stars are associated with the LMC outskirts or Leading Arm. This is further bolstered by a spectral energy distribution analysis, which suggests an excess of stars at a physical distance of 4010040-100 kpc, consistent with being associated with or located behind the Magellanic system. In particular, we find that the overall surface density of stars brighter than 27.0 mag in the field of SMACS 0723 is \sim2.3 times that of stars in a blank field with similar galactic latitude (the North Ecliptic Pole Time Domain Field), and that the density of stars in the SMACS 0723 field with SED-derived distances consistent with the Magellanic system is \sim7.3 times larger than that of the blank field. The candidate stars at these distances are consistent with a stellar population at the same distance modulus with [Fe/H] =1.0= -1.0 and an age of \sim5.05.0 Gyr. On the assumption that all of the 68 stars are associated with the LMC, then the stellar density of the LMC at the location of the SMACS 0723 field is \sim710710 stars kpc3^{-3}, which helps trace the density of stars in the LMC outskirts.Comment: Submitted to ApJ, comments welcom

    Hidden giants in JWST's PEARLS: An ultra-massive z=4.26 sub-millimeter galaxy that is invisible to HST

    Full text link
    We present a multi-wavelength analysis using SMA, JCMT, NOEMA, JWST, HST, and SST of two dusty strongly star-forming galaxies, 850.1 and 850.2, seen through the massive cluster lens A1489. These SMA-located sources both lie at z=4.26 and have bright dust continuum emission, but 850.2 is a UV-detected Lyman-break galaxy, while 850.1 is undetected at <2um, even with deep JWST/NIRCam observations. We investigate their stellar, ISM, and dynamical properties, including a pixel-level SED analysis to derive sub-kpc-resolution stellar-mass and Av maps. We find that 850.1 is one of the most massive and highly obscured, Av~5, galaxies known at z>4 with M*~10^11.8 Mo (likely forming at z>6), and 850.2 is one of the least massive and least obscured, Av~1, members of the z>4 dusty star-forming population. The diversity of these two dust-mass-selected galaxies illustrates the incompleteness of galaxy surveys at z>3-4 based on imaging at <2um, the longest wavelengths feasible from HST or the ground. The resolved mass map of 850.1 shows a compact stellar mass distribution, Re(mass)~1kpc, but its expected evolution to z~1.5 and then z~0 matches both the properties of massive, quiescent galaxies at z~1.5 and ultra-massive early-type galaxies at z~0. We suggest that 850.1 is the central galaxy of a group in which 850.2 is a satellite that will likely merge in the near future. The stellar morphology of 850.1 shows arms and a linear bar feature which we link to the active dynamical environment it resides within.Comment: Submitted to ApJ, comments welcome

    Hidden Giants in JWST's PEARLS: An Ultramassive z = 4.26 Submillimeter Galaxy that Is Invisible to HST

    Get PDF
    We present a multiwavelength analysis using the Submillimeter Array (SMA), James Clerk Maxwell Telescope, NOEMA, JWST, the Hubble Space Telescope (HST), and the Spitzer Space Telescope of two dusty strongly star-forming galaxies, 850.1 and 850.2, seen through the massive cluster lens A 1489. These SMA-located sources both lie at z = 4.26 and have bright dust continuum emission, but 850.2 is a UV-detected Lyman-break galaxy, while 850.1 is undetected at ≲ 2 μm, even with deep JWST/NIRCam observations. We investigate their stellar, interstellar medium, and dynamical properties, including a pixel-level spectral energy distribution analysis to derive subkiloparsec-resolution stellar-mass and A V maps. We find that 850.1 is one of the most massive and highly obscured, A V ∼ 5, galaxies known at z > 4 with M * ∼1011.8 M ⊙ (likely forming at z > 6), and 850.2 is one of the least massive and least obscured, A V ∼ 1, members of the z > 4 dusty star-forming population. The diversity of these two dust-mass-selected galaxies illustrates the incompleteness of galaxy surveys at z ≳ 3–4 based on imaging at ≲ 2 μm, the longest wavelengths feasible from HST or the ground. The resolved mass map of 850.1 shows a compact stellar-mass distribution, Remass ∼1 kpc, but its expected evolution means that it matches both the properties of massive, quiescent galaxies at z ∼ 1.5 and ultramassive early-type galaxies at z ∼ 0. We suggest that 850.1 is the central galaxy of a group in which 850.2 is a satellite that will likely merge in the near future. The stellar morphology of 850.1 shows arms and a linear bar feature that we link to the active dynamical environment it resides within

    The JWST Discovery of the Triply-imaged Type Ia "Supernova H0pe" and Observations of the Galaxy Cluster PLCK G165.7+67.0

    Full text link
    A Type Ia supernova (SN) at z=1.78z=1.78 was discovered in James Webb Space Telescope Near Infrared Camera imaging of the galaxy cluster PLCK G165.7+67.0 (G165; z=0.35z = 0.35). The SN is situated 1.5-2kpc from its host galaxy Arc 2 and appears in three different locations as a result of gravitational lensing by G165. These data can yield a value for Hubble's constant using time delays from this multiply-imaged SN Ia that we call "SN H0pe." Over the entire field we identified 21 image multiplicities, confirmed five of them using Near-Infrared Spectrograph (NIRspec), and constructed a new lens model that gives a total mass within 600kpc of (2.6±0.3)×10142.6 \pm 0.3) \times 10^{14} M_{\odot}. The photometry uncovered a galaxy overdensity at Arc 2's redshift. NIRSpec confirmed six member galaxies, four of which surround Arc 2 with relative velocity \lesssim900 km s1^{-1} and projected physical extent \lesssim33 kpc. Arc 2 dominates the stellar mass ((5.0±0.1)×1011(5.0 \pm 0.1) \times 10^{11} M_{\odot}), which is a factor of ten higher than other members of this compact galaxy group. These other group members have specific star formation rates (sSFR) of 2-260Gyr1^{-1} derived from the Hα\alpha-line flux corrected for stellar absorption, dust extinction, and slit losses. Another group centered on the dusty star forming galaxy Arc 1 is at z=2.24z=2.24. The total SFR for the Arc 1 group (gtrsimgtrsim M_{\odot} yr1^{-1}) translates to a supernova rate of \sim1 SNe yr1^{-1}, suggesting that regular monitoring of this cluster may yield additional SNe.Comment: 27 pages, submitted to Ap
    corecore