278 research outputs found

    Light colored scalars from grand unification and the forward-backward asymmetry in top quark pair production

    Full text link
    The experimental results on the t bar t production cross section at the Tevatron are well described by the QCD contributions within the standard model, while the recent measurement of the forward-backward asymmetry cannot be accounted for within this framework. We consider light colored scalars appearing in a particular SU(5) GUT model within the 45-dimensional Higgs representation. A virtue of the model is that it connects the presence of a light colored SU(2) singlet (Delta_6) and a color octet weak doublet (Delta_1) with bounds on the proton lifetime, which constrain the parameter space of both scalars. We find that both the t bar t production cross section and the forward-backward asymmetry can be accommodated simultaneously within this model. The experimental results prefer a region for the mass of Delta_6 around 400 GeV, while Delta_1 is then constrained to have a mass around the TeV scale as well. We analyze possible experimental signatures and find that Delta_6 associated top production could be probed in the t bar t + jets final states at Tevatron and the LHC.Comment: 12 pages, 13 figures, version as publishe

    Scanning reflectance spectroscopy (380-730nm): a novel method for quantitative high-resolution climate reconstructions from minerogenic lake sediments

    Get PDF
    High-resolution (annual to sub-decadal) quantitative reconstructions of climate variables are needed from a variety of paleoclimate archives across the world to place current climate change in the context of long-term natural climate variability. Rapid, high-resolution, non-destructive scanning techniques are required to produce such high-resolution records from lake sediments. In this study we explored the potential of scanning reflectance spectroscopy (VIS-RS; 380-730nm) to produce quantitative summer temperature reconstructions from minerogenic sediments of proglacial, annually laminated Lake Silvaplana, in the eastern Swiss Alps. The scanning resolution was 2mm, which corresponded to sediment deposition over 1-2years. We found correlations up to r=0.84 (p<0.05) for the calibration period 1864-1950, between six reflectance-dependent variables and summer (JJAS) temperature. These reflectance-dependent variables (e.g. slope of the reflectance 570/630nm, indicative of illite, biotite and chlorite; minimum reflectance at 690nm indicative of chlorite) indicate the mineralogical composition of the clastic sediments, which is, in turn, related to climate in the catchment of this particular proglacial lake. We used multiple linear regression (MLR) to establish a calibration model that explains 84% of the variance of summer (JJAS) temperature during the calibration period 1864-1950. We then applied the calibration model downcore to develop a quantitative summer temperature reconstruction extending back to AD 1177. This temperature reconstruction is in good agreement with two independent temperature reconstructions based on documentary data that extend back to AD 1500 and tree ring data that extend back to AD 1177. This study confirms the great potential of in situ scanning reflectance spectroscopy as a novel non-destructive technique to rapidly acquire high-resolution quantitative paleoclimate information from minerogenic lake sediment

    Charm meson resonances in D→PℓνD \to P \ell \nu decays

    Full text link
    Motivated by recent experimental results we reconsider semileptonic D→PℓνℓD \to P \ell \nu_{\ell} decays within a model which combines heavy quark symmetry and properties of the chiral Lagrangian. We include excited charm meson states, some of them recently observed, in our Lagrangian and determine their impact on the charm meson semileptonic form factors. We find that the inclusion of excited charm meson states in the model leads to a rather good agreement with the experimental results on the q2q^2 shape of the F+(q2)F_+(q^2) form factor. We also calculate branching ratios for all D→PℓνℓD \to P \ell \nu_{\ell} decays.Comment: 9 pages, 4 figures; minor corrections, added some discussion, version as publishe

    Light Colored Scalar as Messenger of Up-Quark Flavor Dynamics in Grand Unified Theories

    Full text link
    The measured forward-backward asymmetry in the t tbar production at the Tevatron might be explained by the additional exchange of a colored weak singlet scalar. Such state appears in some of the grand unified theories and its interactions with the up-quarks are purely antisymmetric in flavor space. We systematically investigate the resulting impact on charm and top quark physics. The constraints on the relevant Yukawa couplings come from the experimentally measured observables related to D0--D0bar oscillations, as well as di-jet and single top production measurements at the Tevatron. After fully constraining the relevant Yukawa couplings, we predict possible signatures of this model in rare top quark decays. In a class of grand unified models we demonstrate how the obtained information enables to constrain the Yukawa couplings of the up-quarks at very high energy scale.Comment: 13 pages, 11 figures, version as published in PR

    Bump Hunting in Latent Space

    Full text link
    Unsupervised anomaly detection could be crucial in future analyses searching for rare phenomena in large datasets, as for example collected at the LHC. To this end, we introduce a physics inspired variational autoencoder (VAE) architecture which performs competitively and robustly on the LHC Olympics Machine Learning Challenge datasets. We demonstrate how embedding some physical observables directly into the VAE latent space, while at the same time keeping the classifier manifestly agnostic to them, can help to identify and characterise features in measured spectra as caused by the presence of anomalies in a dataset.Comment: 5 pages, 4 figure

    Learning the latent structure of collider events

    Get PDF
    We describe a technique to learn the underlying structure of collider events directly from the data, without having a particular theoretical model in mind. It allows to infer aspects of the theoretical model that may have given rise to this structure, and can be used to cluster or classify the events for analysis purposes. The unsupervised machine-learning technique is based on the probabilistic (Bayesian) generative model of Latent Dirichlet Allocation. We pair the model with an approximate inference algorithm called Variational Inference, which we then use to extract the latent probability distributions describing the learned underlying structure of collider events. We provide a detailed systematic study of the technique using two example scenarios to learn the latent structure of di-jet event samples made up of QCD background events and either ttÂŻ.Fil: Dillon, B. M.. Institute Jo?ef Stefan; EsloveniaFil: Faroughy, D. A.. Universitat Zurich; SuizaFil: Kamenik, J. F.. Institute Jo?ef Stefan; Eslovenia. University of Ljubljana; EsloveniaFil: Szewc, Manuel. Universidad Nacional de San MartĂ­n; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentin

    Bayesian Probabilistic Modelling for Four-Tops at the LHC

    Get PDF
    Monte Carlo (MC) generators are crucial for analyzing data at hadron colliders, however, even a small mismatch between the MC simulations and the experimental data can undermine the interpretation of LHC searches in the SM and beyond. The jet multiplicity distributions used in four-top searches, one of the ultimate rare processes in the SM currently being explored at the LHC, makes pp→ttˉttˉpp\to t\bar tt \bar t an ideal testing ground to explore for new ways to reduce the impact of MC mismodelling on such observables. In this Letter, we propose a novel weakly-supervised method capable of disentangling the ttˉttˉt\bar t t\bar t signal from the dominant background, while partially correcting for possible MC imperfections. A mixture of multinomial distributions is used to model the light-jet and bb-jet multiplicities under the assumption that these are conditionally independent given a categorical latent variable. The signal and background distributions generated from a deliberately untuned MC simulator are used as model priors. The posterior distributions, as well as the signal fraction, are then learned from the data using Bayesian inference. We demonstrate that our method can mitigate the effects of large MC mismodellings using a realistic ttˉttˉt\bar tt\bar t search in the same-sign dilepton channel, leading to corrected posterior distributions that better approximate the underlying truth-level spectra.Comment: 5 pages, 3 figures, with supplementary material at https://github.com/ManuelSzewc/bayes-4top

    Minimal lepton flavor violating realizations of minimal seesaw models

    Full text link
    We study the implications of the global U(1)R symmetry present in minimal lepton flavor violating implementations of the seesaw mechanism for neutrino masses. In the context of minimal type I seesaw scenarios with a slightly broken U(1)R, we show that, depending on the R-charge assignments, two classes of generic models can be identified. Models where the right-handed neutrino masses and the lepton number breaking scale are decoupled, and models where the parameters that slightly break the U(1)R induce a suppression in the light neutrino mass matrix. We show that within the first class of models, contributions of right-handed neutrinos to charged lepton flavor violating processes are severely suppressed. Within the second class of models we study the charged lepton flavor violating phenomenology in detail, focusing on mu to e gamma, mu to 3e and mu to e conversion in nuclei. We show that sizable contributions to these processes are naturally obtained for right-handed neutrino masses at the TeV scale. We then discuss the interplay with the effects of the right-handed neutrino interactions on primordial B - L asymmetries, finding that sizable right-handed neutrino contributions to charged lepton flavor violating processes are incompatible with the requirement of generating (or even preserving preexisting) B - L asymmetries consistent with the observed baryon asymmetry of the Universe.Comment: 21 pages, 4 figures; version 2: Discussion on possible generic models extended, typos corrected, references added. Version matches publication in JHE
    • …
    corecore