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1 Introduction

With the discovery of the Higgs boson [1, 2], all the degrees of freedom that form our

current consistent theoretical understanding of fundamental quantum interactions — the

standard model (SM) — have been experimentally established. The theoretical and phe-

nomenological program that enabled this fundamental scientific achievement has lasted for

more than three decades starting when the dominant SM Higgs boson production and de-

cay modes have been first identified and computed [3–5]. It involved detailed theoretical

calculations of both the eventual signal, but also the most relevant (and typically much

more abundant) background processes from which the (relatively small) signal had to be

painstakingly extracted with the use of advanced statistical methods [1, 2, 6].

Contrary to the hunt for the SM Higgs boson (and also other SM heavy resonances,

like the top quark or the weak gauge bosons), whose properties, processes and signatures

at high energy colliders were well predicted and understood before their discovery, our

current quest for uncovering possible new physics (NP) degrees of freedom beyond those

of the SM faces a much bigger challenge. Namely, there is no unique well established

model of NP which would convincingly address all the known SM shortcomings and whose

phenomenology could be precisely studied and targeted experimentally. Instead there exist

a plethora of NP proposals and possibilities. The few simplest, most elegant and thus most

compelling possibilities have already been mostly excluded or pushed into fringe corners

of their respective parameter spaces, while systematically exploring the phenomenology of

the whole vast imaginable model space is clearly beyond current human capabilities.

In the last few years, machine learning (ML) tools have opened new avenues in NP

searches, see e.g. [7–10] and references therein. The currently most widely used framework

is that of Neural Networks (NNs) as efficient likelihood approximators trained on vast

amounts of data. Since these supervised ML approaches commonly rely on theoretical

predictions for both NP (signal) and SM (background) training data sets (typically through

Monte Carlo (MC) generators), their use in searches for a priori unknown new phenomena

in LHC events is severely limited.

There have been recent advances in unsupervised or semi-supervised ML techniques

designed to be able to separate signal and background events in mixed samples, and could

therefore be run directly on experimental data without the need for pure MC training

samples, see e.g. refs. [11–36]. They rely on categorizing and comparing datasets with

different expected signal and background admixtures or identifying anomalous events inside

large datasets. While these approaches ameliorate the model dependence of fully supervised

ML, they are still potentially susceptible to correlated systematics (i.e. detector) effects

and/or subject to large look-elsewhere effects. In addition, they generally work best when

applied on very large datasets. Consequently their performance may suffer when looking

for effects in tails of distributions.

Recently [37], we have proposed a new technique to classify jets and events in situ

within a single mixed event sample, using tools developed in a branch of ML called genera-

tive statistical modeling, see e.g. [38]. Developed primarily to identify emergent themes in

collections of documents, these models infer the hidden (or latent) structure of a document
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corpus using posterior Bayesian inference based on word and theme co-occurence [39–45].

Using the example of jet substructure observables based on the clustering history, we have

shown how to construct statistical mixed membership models of jet substructure. In par-

ticular, using the model of Latent Dirichlet Allocation (LDA) [40], which can be solved

efficiently using e.g. Variational Inference (VI) [46] techniques, we were able to define robust

parametric jet and event classifiers.1

In the present work we provide further details of this approach, building upon the

basic assumptions and premises about the relevant measurements/observables and their

statistical modeling, in order to construct generative Bayesian models most relevant and

practical for particle physics event classification, in particular LDA. We also provide fur-

ther justification for why jet clustering history observables are a particularly interesting

and applicable example for these methods. Finally, we perform a systematic study of the

parametric and Bayesian prior dependence and performance of VI and LDA, respectively,

based on two representative examples of boosted tt̄ events and events containing hypo-

thetical boosted color neutral, but hadronically decaying scalars [13, 20, 26, 54, 55]. In

particular, we identify perplexity, as a robust measure of LDA and VI performance, which

does not rely on access to labelled data but at the same time correlates strongly with tra-

ditional classification performance measures (like tagging efficiency and mistag rate), and

use it to identify parameter and prior ranges most suitable for the example datasets.

The paper is structured as follows: in section 2 we outline the statistical premises and

introduce Bayesian generative models upon which LDA is based. We also provide details

of LDA training and inference methods and how they can be applied to event classification.

In section 3 we apply the general framework to the multi-jet event data in the form of jet

clustering history observables and discuss the most appropriate data representations. The

benchmark event samples used for our study are introduced in section 4, where we also

discuss the data preparation steps that need to be considered when using LDA. Section 5

contains the main results of our systematic study of LDA based classification methods

applied to the example datasets. Finally we summarize our conclusions and provide an

outlook in section 6.

2 Probabilistic generative modelling for collider experiments

The goal in high energy collider experiments is to gain understanding of the underlying

physical processes taking place at very high energies during the events, i.e. the hard colli-

sions. Each event can result in anywhere from O(10) to O(1000) particles being detected

away from the beamline and the detector records the energy, momentum, and tracking

information of these particles. One must then analyse this high-dimensional dataset and

compare it to what is expected from theoretical predictions in order to gain an under-

standing of the underlying physics. To perform this analysis in practice, typically the

dimensionality of the dataset must be drastically reduced. How this is done depends on

the type of underlying physics one wants to study and typically involves some combination

of jet clustering and grooming, pile-up subtraction, the use of certain high-level observables,

1Some related ML techniques have been previously studied in refs. [20, 26, 47–53].
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and performing cuts to remove unnecessary elements of the dataset. Once the dataset has

been processed and the relevant high-level observables have been collated, a statistical

analysis comparing the measurements with the theoretical predictions can quantify how

much a particular physics model agrees with the data.

Bayesian probabilistic generative modeling is an unsupervised machine learning ap-

proach in which one constructs a probabilistic model for a dataset, and then uses approx-

imate inference techniques to estimate the parameters of this probabilistic model directly

from the data. If the probabilistic model is a good approximation to how the data was

actually generated, this in turn allows to identify patterns in the dataset. In our case

these patterns could contain important information on the underlying physical processes

registered in collider events.

In the most general sense, a single event ej (j = 1, 2, . . . , Ne) can be represented

by a finite list of measurements, ej = {oj,1, oj,2, . . .}, where oj,i (i = 1, 2, . . . , Nj) are

in general functions (or mappings) of the relevant multi-particle phase-space. We can

construct a model for the events by supposing that the measurements have been sampled

from a (presumably complicated) joint probability distribution p(ej) = p(oj,1, oj,2, . . .).

This is the starting point for the unsupervised analysis techniques used in this paper.

Writing a general statistical model describing the generative process of events is not possible

in practice. To proceed, it is necessary to impose a set of simplifying assumptions on the

joint probability distribution. The functional dependence of this distribution on oj,i must

of course be flexible enough in order to account for the multiple physical processes manifest

in each event, but it also must be simple enough such that efficient inference techniques can

be implemented. In order to model the events using the techniques described in this paper,

the phase-space observables furthermore need to be labeled and binned so that the possible

measurements oj,i are discrete and finite in number. This requirement allows to construct

probabilistic models based on multinomial distributions that describe the occurrence of the

measurement bins oj,i in events. If we were to consider unbinned observables then p(ej)

would be constructed from continuous probability distributions. However, given that in

practice the measurements we work with are also coarse-grained due to detector granularity

and reconstruction uncertainties it is intuitive to select bins for the measurements that

reflect this.

2.1 Probabilistic generative models

In order to introduce the reader to the concepts and models used in this work we will dis-

cuss two different models for p(ej) of increasing complexity: mixture models, and mixed-

membership models. The starting point for the construction of these models is de Finetti’s

representation theorem [56], which states that if the measurements in the joint probabil-

ity distribution are exchangeable then the measurements are conditionally independent

given some latent variables. The exchangeability requirement simply means that the joint

probability distribution should be invariant under a re-ordering or exchanging of the mea-

surements. Note that measurement exchangeability is not to be confused with measurement

independence (i.i.d). The former is a weaker condition that leads to more flexible proba-

bilistic models capable of capturing complicated hierarchical patterns in the data. Formally,
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the theorem states that the joint probability distribution can be written in the form

p(oj,1, oj,2, . . . , oj,Nj ) =

∫
Θ
dθ p(θ)

Nj∏
i=1

p(oj,i| θ) , (2.1)

where θ (Θ) represents a hidden latent parameter (space) which is marginalised over in the

joint probability. From the p(oj,i|θ) factor on the right-hand side of the above equation we

can see that the independence of the different measurements is manifest, and is replaced

by a conditional dependence on the latent space variables. When viewing this result from

a Bayesian perspective, the probability functions p(o |θ) represent likelihoods while the

function p(θ) outside of the product acts as a prior distribution over the latent space. This

theorem underpins probabilistic models such as mixture models and mixed-membership

models, which we will discuss in the following sections.

2.1.1 Mixture models

We now present one of the simplest probabilistic models for a sample of collider events.

The mixture model consists of T probability distributions over the measurement bins,

represented by p(o|t, β) for t = 1, . . . , T . These probability distributions are M -dimensional

multinomials (multidimensional generalisations of the binomial), where M is the number

of bins in observable-space. The parameters of these multinomials are represented by the

elements of a T ×M dimensional matrix, βt,m having the property that
∑M

m=1 βt,m = 1

for all t. Each row in βt,m contains the parameters of the multinomial associated to one

of the T probability distributions. A key feature of mixture models is that they assume

measurements in a single event have been sampled from just one of these T multinomial

distributions. So for each event one of the T distributions is selected from a multinomial

probability distribution p(t|ω), where ω = (ω1, . . . , ωT ) are the probabilities to select each

T . They satisfy 0 ≤ ωt ≤ 1 and
∑T

t ωt = 1. In this work we refer to each T latent

multinomial distribution as a ‘theme’, in reference to the field of ‘topic modeling’ in text

analysis where these methods were popularised, thus the ω parameters are referred to as

theme weights.

It is useful to describe the probabilistic model in terms of a generative process, outlining

the underlying assumption on how the events were generated. The generative process for

a collection of events in a mixture model goes as follows:

i. Randomly sample a theme t ∼ p(t|ω).

ii. Randomly sample a measurement oj,i ∼ p(o|t, βt).
iii. Repeat step (ii) for each measurement in the event.

iv. Repeat steps (i)-(iii) for each event in the sample.

The mathematical structure of the model can be realised by taking the representation of

the joint probability distribution due to de Finetti’s theorem (2.1) and defining θ ∈ R with

a prior distribution over the latent space as p(θ) =
∑T

t p(θ|ω)δ(θ − t) where p(θ|ω) is a

– 5 –
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Figure 1. The graphical models representing the generative process for Nj measurements in Ne

events for the mixture model eq. (2.2) (upper diagram) and the mixed-membership model eq. (2.4)

(lower diagram). See text for details.

density such that p(θ= t|ω) = ωt. This leads us to the form

p(ej) =

T∑
t=1

p(t|ω)

Nj∏
i=1

p(oj,i|t, β) . (2.2)

The generative process described here can be visually represented using a so-called

graphical model, see e.g. [38]: the unobserved variables (Latent random variables and model

parameters) are represented by white circles, observed data (measurements) are represented

by shaded circles, while the conditional dependencies and i.i.d samplings are represented by

arrows. To indicate that certain steps in the generative process are replicated, a labelled

box or plate is drawn around the relevant parts of the diagram, with the integer label

representing the number of times these steps are to be repeated (thus such graphical models

are often also referred to as plate diagrams). The graphical mixture model described here

is shown in the upper diagram in figure 1. We can see there that the free parameters of

the mixture model given by the theme proportions ωt and the multinomial probabilities

βt,m, located outside all plates, have to be defined for the whole event sample in order to

initiate the generative process that leads to the measurements oj,i in the inner-most plate.

In collider physics, it is implicit that event samples arise from a statistical mixture of

multiple underlying physical scattering process, where each event is a result of one such

particular scattering process. Once the corresponding differential cross-sections are binned,

the scattering processes can be identified with themes in a multinomial mixture model as

described above. Traditionally, the weights ω are computed from first principles using a

combination of Quantum Field Theory, Montecarlo event generators tuned to data and

experimental knowledge of the detector response.

More recently, mixture models have been used for semi-supervised classification of

event samples where the mixture proportions of the themes are a priori unknown. For
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instance, in the CWoLa framework [11] a set of event samples M1 and M2 are taken as

mixtures of two underlying themes (with different mixing proportions) S and B, corre-

sponding to signal and background themes. Along this same line, a mixture model was

used in ref. [21] with the aim of disentangling the jet substructure distributions (e.g. con-

stituent multiplicity) of quark and gluon jets using mixed event samples. The same model

and technique was also used in ref. [57] in an attempt to separate pp → tt̄tt̄ from back-

grounds in inclusive same-sign dilepton events using jet multiplicity distributions.

There are several drawbacks when using mixture models for (unsupervised) event clas-

sification tasks. These come from the assumption that all measurements in an individual

event are drawn from one theme. The main (related) issues are the following:

• Measurements on a single collider event typically receive contributions from many

sources, for example in measuring tt̄ production it is inevitable that much of the

measurements will be of soft QCD radiation rather than the hard decays products

of the top quarks. Mixture models fail to differentiate between different underlying

processes in individual events.

• Mixture models are not well suited for modeling datasets where events generated from

different themes share common features. Admittedly this is a problem in extracting

the themes with the approximate inference techniques, but is a drawback nonetheless,

see e.g. ref. [40].

In general, mixtures are useful representations of the data if the mixing propor-

tions ω can be computed from first principles or estimated with other means (such as

in (semi)supervised ML), but tend to be less suitable if w are a-priori unknown, as in

unsupervised ML. Next we discuss mixed-membership models, which address these issues

in an efficient way.

2.1.2 Mixed-membership models

Mixed-membership models also consist of T themes, however a single event is now generated

from a mixture of themes rather than being generated from a single theme, as in the mixture

model. Each event ej now has its own theme weights ωj = (ωj,1, . . . , ωj,T ). These are now

latent variables of the model (not parameters) that are sampled from a prior distribution

p(ω|α), with α being the parameters of the distribution. This prior is in general defined

over the (T − 1)–dimensional simplex describing the space of all theme weights (i.e. the

space of T -vectors with positive entries that sum up to one). The generative process for a

mixed-membership model goes as follows:

i. Randomly sample a set of T theme proportions from the prior, ωj ∼ p(ω|α).

ii. Randomly sample a theme t ∼ p(t|ωj).
iii. m Randomly sample a measurement oj,i ∼ p(o|t, β).

iv. Repeat steps (ii)-(iii) for each measurement in the event.

v. Repeat steps (i)-(iv) for each event in the sample.

– 7 –



J
H
E
P
1
0
(
2
0
2
0
)
2
0
6

We can derive the mixed-membership representation of the joint probability by taking

eq. (2.1) and assigning

p(oj,i|ω) =
T∑
t=1

p(t|ωj) p(oj,i|t, β), (2.3)

where p(t|ωj) = ωj,t. Therefore the mixed-membership model for an event is defined by

p(ej) =

∫
Ω
dω p(ω|α)

Nj∏
i=1

T∑
t=1

p(t|ωj) p(oj,i|t, β) , (2.4)

where Ω is the simplex. Note the slight change in notation: the latent space variable θ

from eq. (2.1) has been replaced with ω ← θ (and Ω← Θ) to keep the notation for mixed-

membership models in line with the notation for mixture models. The generative process

for the mixed-membership model is shown in the lower diagram of figure 1. In comparison

to the mixture model plate diagram, notice that the theme selection step is now inside the

event plate indicating the mixed-membership nature of the model. The free parameters of

the mixed-membership model are α from the prior and the multinomial probabilities βt,m
of the themes.

Using mixed-memberships resolves the problem mixture models have when modeling

events sharing similar features. It is therefore possible to model events that are much

more heterogenous. It is also clear that the model can now describe events where mea-

surements receive contributions from multiple sources, accommodated now by each event

having measurements in a single event sampled from different themes.

2.2 Latent Dirichlet Allocation

In Bayesian probabilistic modeling the inference of model parameters is one of the primary

tasks, and will be discussed in detail in section 2.3. Choosing the prior p(ω|α) to be the

conjugate distribution to the likelihood function makes the parameter inference easier. For

mixed-membership models with a multinomial likelihood, as we have here, the conjugate

prior is the Dirichlet distribution D(·|α). Choosing p(ω|α) in eq. (2.4) to be a Dirichlet dis-

tribution leads us to Latent Dirichlet Allocation (LDA) [40, 42]. The Dirichlet distribution

defined over the simplex Ω is a multivariate generalisation of the beta distribution over the

unit interval [0, 1], reducing to the beta distribution for T = 2. It is in fact a parametric

family of distributions, defined by T positive non-zero parameters, α = α1, . . . , αT , and

has the explicit form

D(ω|α) =
Γ
(∑T

t=1 αt

)
∏T
t=1 Γ(αt)

T∏
t=1

ωαt−1
t , (2.5)

where Γ(x) is the gamma function. In LDA, the Dirichlet prior encodes prior information

on how we expect the themes to contribute both to individual events and to the whole

sample of events. It does this by influencing the possible proportions ωj selected in the

generative process. For example a particular choice of parameters (α) could define a model

in which one particular theme contributes much less to individual events than another, or
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Figure 2. (Left) Three representative Dirichlet priors for T = 2 over the unit interval drawn in

different coloured full lines. The uniform prior D(ω1|1, 1) is also shown in dashed grey. (Right)

Regions with the same prior shapes projected onto the (Σ, ρ)-plane defined in eq. (2.7). The distinct

shape inside each colored region is represented by one distribution in the left panel with matching

color codes.

it could define a model in which some events are composed almost exclusively of one theme

while others are more equal mixtures of several themes.

As mentioned in the introduction, we will be concerned solely with scenarios in which

only two themes are relevant. We will therefore focus on the T =2 case where the Dirichlet

prior reduces to a beta distribution. For each event we sample a variable ω1 from the

Dirichlet (beta) distribution representing the proportion of the first theme p(o|1, β), while

the proportion of the second theme p(o|2, β) is given by ω2 = 1 − ω1. In this two-theme

scenario, the analytical form of the Dirichlet is given by

D(ω1|α1, α2) =
Γ(α1 + α2)

Γ(α1) Γ(α2)
ωα1−1

1 (1− ω1)α2−1, (2.6)

where for now we drop the j subscript labelling the event. When inspecting the above

distribution family for different values of the α parameters, one identifies several cases that

give rise to different types of distribution shapes. These different shapes encode different

assumptions about underlying event data. For instance D(ω1|1, 1) corresponds to the flat

distribution over the unit interval and would describe events for which the occurrence of

either theme in an event is completely random (shown in gray dashed line in figure 2). The

other more interesting shapes are the following:

1. α1< 1, α2< 1: bi-modal distributions (shaded in red in figure 2) with two maxima

at the boundaries of the unit interval (ω1 = 0 and ω1 = 1). Physically, this scenario

describes samples for which one group of events have measurements predominantly

sampled from the first theme, and another group for which measurements are mostly

sampled from the second theme. The relative size between each group of events is

controlled by the ratio α2/α1.

2. α1 > 1, α2 < 1: uni-modal distributions with a maximum located at one boundary

of the interval and the distribution tail stretching towards the opposite boundary

– 9 –
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(shaded in yellow in figure 2). In this case we expect most events to be generated

mostly by one predominant theme.

3. α1>1, α2>1: uni-modal distributions with one maximum located at ω1 = α1−1
α1+α2−2

and two tails stretching towards both boundaries of the interval (shaded in blue in

figure 2). In this case we expect the bulk of events to be generated by non-negligible

mixtures of both themes, with very few events where just one theme completely

dominates. However the exact distribution depends strongly on the hierarchy between

α1 and α2.

In the following sections we will rely on a useful re-parameterisation of the Dirichlet where

we trade the (α1, α2) parameters for (Σ, ρ) defined as

Σ ≡ α1 + α2 , ρ ≡ α2

α1
. (2.7)

By convention we have fixed here α2 ≤ α1, hence 0 < ρ ≤ 1. The ρ parameter controls

the asymmetry in the shape of the Dirichlet distribution. In figure 2 (right) we present a

visualisation of the different shapes taken by the Dirichlet distribution, in terms of these

ρ and Σ parameters. The smaller ρ is, the more probable events will be composed of

measurements drawn from the first theme (t = 1). A way to see this, is by considering the

expectation for sampling the themes from the Dirichlet during one measurement sampling.

One finds

ED [ p1ω1 + p2(1− ω1)] =

∫ 1

0
dω1 D(ω1|α) [ω1p1 + (1− ω1)p2] =

p1 + ρ p2

1 + ρ
, (2.8)

where pt are shorthand for the theme multinomials p(o|t, βt,m) and ED[·] denotes the expec-

tation with respect to the Dirichlet distribution. To derive this we have used the relation

for the mean value µ = ED[ω1] = 1
1+ρ . This indicates that in the limit ρ→ 0 of asymmetric

Dirichlet priors, there will be a prevalence of the first theme over the second theme when

sampling measurements for an event, while in the limit ρ→ 1 the priors become symmetric

and events will tend on average to have measurements coming from both themes in simi-

lar proportions. The parameter Σ, on the other hand, controls to what degree individual

events in the model are described by mixtures of themes for a fixed value of the asymmetry

parameter ρ, i.e. to what degree the model is a mixed-membership rather than just a mix-

ture model. For large Σ we expect that events are generated from mixtures of both themes,

whereas for Σ � 1 we expect that events are generated from pre-dominantly one theme.

In fact, it is known that the Beta distribution will approach the Bernoulli distribution in

the limit of Σ → 0 with fixed ρ. In general, a Dirichlet for T themes will approach a

T -dimensional multinomial distribution in the limit
∑T

t=1 αt → 0 [58]. In this limit the

Bernoulli probability p is equal to the expectation value of the Dirichlet, 1
1+ρ . Therefore

in the Σ� 1 limit each event is approximately generated by just one theme, and the LDA

mixed-membership model tends to the mixture model described previously. What happens

is that when for every event you sample (ωj,1, ωj,2) from the Dirichlet, the only weights

that have a non-zero probabilities in the Dirichlet distribution are (ωj,1 = 1, ωj,2 = 0) and
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Figure 3. The graphical model of smoothed LDA.

(ωj,1 = 0, ωj,2 = 1), where the probabilities for selecting each of these from the Dirichlet is

1/(1 + ρ) and ρ/(1 + ρ), respectively. In this mixture model limit ρ takes on the role of the

ratio of theme weights ω1/ω2. In figure 2 we can then identify the boundary at the y-axis

as a mixture model with ω1/ω2 = ρ.

The event samples we analyse can contain anywhere from O(103) to O(106) events and

the number of unique measurements can also be very large. This means that for parts of

the event sample the data will be very sparse, i.e. there will be many oj,i that do not appear

often in the sample. This can lead to issues in the inference procedure, with these rare

measurements being assigned zero probability in the themes, which then leads to problems

during the classification of events. This issue can be solved by so-called ‘smoothing’ [40].

Smoothing involves placing a M -dimensional Dirichlet prior on the variables of the theme

probability distributions, such that no measurement can have a zero probability. The

generative process is then augmented as shown in the plate diagram in figure 3. We fix

each of the M − 1 parameters of the Dirichlet prior to 1/M as default, changing this does

not lead to significant changes in the output of the algorithm. Henceforth we will focus on

smoothed LDA and refer to it simply as LDA.

2.3 Variational inference

Ultimately, the goal is to estimate the posterior distributions for the variables in the LDA

model given the observation of experimental data. The joint probability over all events

e = (e1, . . . , eNe) for the LDA model can be written as

p(e, β, ω, t|α, η) ∝

Ne∏
j=1

p(ωj |α)

( T∏
t=1

p(β|η)

)
Ne∏
j=1

Nj∏
i=1

p(tj,i|ωj)p(oj,i|tj,i, β), (2.9)

where we have not marginalised over the model variables. On the left hand side of this

equation ω represents the list of theme weights for all events in the sample, and t represents

the list of topic assignments for each oj,i in all events in the sample. The joint probability is

the probability of having generated these events given the LDA model with the themes each

being sampled from a Dirichlet parameterised by η, and the theme weights being sampled

per event from a Dirichlet parameterised by α. From this we want to approximate the

posterior distribution p(β, ω, t|e). Bayes theorem states that this posterior should have the

form p(β, ω, t|e) ∝ p(e, β, ω, t)/p(e). The term in the numerator is calculable, however the
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difficulty lies in the normalisation term, the evidence. This term is an intractable integral

and prevents us from straightforwardly obtaining a closed form expression for the posterior

distribution. We can however obtain an approximation to the posterior distribution using

approximate inference techniques. Following [46, 59] we choose the Variational Inference

(VI) technique. With VI the log of the evidence is written as

ln p(e) =

∫
dξ q(ξ) ln

p(e, ξ)

q(ξ)
+

∫
dξ q(ξ) ln

q(ξ)

p(ξ|e)
= L+ KL(q(ξ)

∣∣∣∣p(ξ|e)) , (2.10)

where KL stands for the Kullback-Leibler divergence [60] and we use ξ as a shorthand for the

model variables, (β, ω, t). The function q(ξ) has been introduced here as an approximation

to the posterior distribution,

p(β, ω, t|e) ' q(β, ω, t) ≡ q(β)q(ω)q(t) , (2.11)

where q(β, ω, t) is assumed to factorise in each variable, reflecting how these are grouped

in LDA. The goal of VI is to approximate this q(ξ) function. On the right-hand-side of

eq. (2.10) we have two terms: the Evidence-Lower-BOund (ELBO) L, and the KL diver-

gence between the posterior and its approximation. The KL divergence is always greater

than zero, and is equal to zero only when q(β, θ, t) = p(β, θ, t|e). The term L is then a lower

bound on the evidence, hence calling it the ELBO. We cannot compute the KL divergence

because we cannot compute the posterior, however the joint likelihood and therefore the

ELBO term can be computed. The goal is then to maximise the ELBO with respect to

q(β, ω, t). Because the evidence term on the right-hand-side is completely independent of

q(β, ω, t), maximising the ELBO is equivalent to minimising the KL divergence between

q(β, ω, t) and the posterior, thus finding a q(β, ω, t) which is a good approximation to the

posterior. VI gives us a prescription for doing this in mixed-membership models like LDA.

The LDA model belongs to the conjugate exponential family of models. For these, one

can show that the terms in the posterior approximation must have the following form:

q(tj,i) = Multinomial(φj,i), (j = 1, . . . , Ne), (i = 1, . . . , Nj) ,

q(ωj) = Dirichlet(αj,t), (j = 1, . . . , Ne) (t = 1, . . . , T ) ,

q(βt) = Dirichlet(γt,m), (t = 1, . . . , T ), (m = 1, . . . ,M). (2.12)

So to optimise q(β, ω, t) we need to maximise the ELBO with respect to the parameters

φj,i, αj,t, γt,m. Note that there are T (ne+M)+NJ parameters here, where NJ is the total

number of measurements in all events in the sample. Due to the specific structure of LDA,

i.e. the conditional dependencies and the use of conjugate priors, closed form expressions

of the parameters that maximise the ELBO can be written in terms of each other (see

below). The VI algorithm then dictates how to update the parameters iteratively such

that it converges to a maximum of the ELBO function.

Due to the large number of events from which we infer the parameters of the approx-

imate posterior, the basic VI algorithm is inefficient. To implement this in a way which
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scales well to large datasets we employ an extension of this algorithm called Stochastic Vari-

ational Inference (SVI). This technique uses results from stochastic optimisation methods

to speed up the inference by inferring from smaller randomly sampled subsets of the data

on each update. These are called chunks of data, and their size is determined by the chunk

size nc. The algorithm will run for a total number of passes through the dataset, defined

by np. We denote the total number of chunks of data processed by N . The algorithm is

thoroughly defined as follows:

• Inputs

Event data, and the approximate posteriors q(tj,i) = Multinomial(φj,i), q(ωj) =

Dirichlet(αj,t), q(βt) = Dirichlet(γt,m).

• Outputs

Posterior distributions for αj,t, φj,i, and γt,m.

• Procedure

1. Initialise γ
(n=0)
t,m .

2. For chunks n = 1, . . . , N , do:

(a) Initialise α
(l=0)
j,t , φ

(l=0)
j,i .

(b) For iterations l = 1, . . . , L do:

i. Update q(φj,i) by iterating through j and i and setting

φ
(l)
j,i(t) =

e
ψ
(
γ
(n−1)
t,oj,i

)
−ψ
(∑M

m=1 γ
(n−1)
t,m

)
)+ψ

(
α
(l−1)
j,t

)
−ψ
(∑T

p=1 α
(l−1)
j,p

)
∑T

s=1 e
ψ
(
γ
(n−1)
s,oj,i

)
−ψ
(∑M

m=1 γ
(n−1)
s,m

)
)+ψ

(
α
(l−1)
j,s

)
−ψ
(∑K

p=1 α
(l−1)
j,p

) .
(2.13)

ii. Update q(ωj) by iterating through t and setting:

α
(l)
j,t = αt +

Nj∑
i=1

φ
(l)
j,i(t) . (2.14)

iii. Check for convergence: if the change in α is less than the threshold

parameter αthresh, end loop.

iv. Set φ
(n)
j,i = φ

(L)
j,i and α

(n)
j,t = α

(L)
j,t .

(c) Update the themes.

i. Update q(βt) by iterating through t and m and setting:

γ
(n)
t,m = (1− δn)γ

(n−1)
t,m + δn

η +

Ne∑
j=1

Nj∑
i=1

φ
(n)
j,i (t)I(oj,i = m)

 . (2.15)

(d) Evaluate the normalised (per-oj,i) ELBO for this chunk of data from the

dataset, Ln. This can be used to check for convergence.
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• Return

α
(N)
j,t , φ

(N)
j,i , and γ

(N)
t,m .

The algorithm makes use of the hierarchical structure of the model, with local variables

(ω, t) being optimised until convergence before an update on the global variables (themes,

β) is performed. While optimising the local variables the algorithm uses the (l − 1)th

approximation of αj,t and the (n− 1)th approximation of γt,m to calculate the lth approxi-

mation of φj,i, before using the lth approximation of φj,i to calculate the lth approximation

to αj,t. Once L updates of this sort have been done, or until convergence has been met

according to αthresh, the themes are updated using the local variables obtained at the end

of the inner loop.

A few points of note: (i) the digamma function ψ(·) in eq. (2.13) arises from the expec-

tation of the natural logarithm of the Dirichlet distribution, explicitly ψ(x)=d log[Γ(x)]/dx,

(ii) the η in eq. (2.15) is from the prior on the theme distributions, (iii) the I(·) in eq. (2.15)

is an indicator function, which is equal to 1 when the equality in the brackets is true, and

equals zero when it is not.

It is also important to note the key role played by the latent variable φj,i, which

encodes information on which theme each measurement in each event was sampled from.

This variable captures the co-occurrences between different measurements in the event

sample. For example, if some measurement m′ co-occurs with another measurement m′′ in

many events, this information is stored by the φj,i variable and through iterative updates

these two measurements are more likely to end up with large weights in the same theme

distribution. It is through the presence of co-occurring measurements in the data that this

algorithm is able to disentangle different underlying physical processes occurring in the

events. Without these co-occurrences, or a method to utilise them, the best an unsupervised

algorithm can do in identifying rare events is to search for outliers in the data. Thus

searching for these co-occurrences is essential in extracting a generative description of

the events. We pay particular attention to this in deciding upon a data representation

(section 4.4) for our benchmark studies.

In this work we have used the implementation of the SVI procedure as described above

within gensim [61], a software package for performing unsupervised semantic modeling of

plain text.2 The parameters of the SVI algorithm are the chunk size nc, the number of

iterations L, the alpha threshold αthresh, and the number of passes nP . On the other hand,

the learning rate δn is not constant in gensim but follows

δn =
1

(τ0 + n)κ
, (2.16)

where τ0 is the offset and κ is the decay parameter. This stochastic inference procedure

is proven to converge to a local minimum if
∑∞

n=1 δn = ∞ and
∑∞

n=1 δ
2
n < ∞, which is

guaranteed for κ ∈ (1
2 , 1]. The convergence of the whole algorithm can be assessed using

2Code used for the analysis in this paper can be found at https://github.com/barrydillon89/LDA-jet-

substructure.
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the ELBO, or equivalently, the perplexity defined as

Pn = 2−Ln . (2.17)

A lower perplexity means that the ELBO is larger and thus the KL-divergence between

the posterior and approximate posterior is smaller. In section 5.1 we study how the choices

of the offset and the chunk size parameters of the algorithm affect the convergence and

performance of the models as well as their final perplexity.

With the posterior distributions at hand, we would typically like to infer the theme

distributions and the theme weights of individual events. Ideally, we would maximise the

posterior distributions with respect to the variational parameters to obtain best estimates

of the theme parameters and mixing weights for the LDA model, however this is computa-

tionally difficult [62]. A good approximation for the theme parameters and mixing weights

can instead be obtained by simply taking the expectation values,

β̂t,m =Eq[βt,m] =
γt,m∑M
m=1 γt,m

, (2.18)

ω̂j,t =Eq[ωj,t] =
αj,t∑T
t=1 αj,t

. (2.19)

2.4 The LDA landscape

In section 2.2 we discussed the importance of the hyper-parameters ρ and Σ in defining

the LDA model, and their physical importance with regards to the dataset. However in

section 2.3 we did not include these parameters in the approximate inference procedure,

thus they are not learned from the data. Varying the hyper-parameters ρ and Σ changes

the ELBO and thus leads to a different outcome for the learned themes. For this reason

we refer to a ‘landscape’ of LDA models defined over the hyper-parameters.

2.4.1 A landscape of classifiers

We use the learned themes to classify events as signal or background, thus we also have

a landscape of classifiers defined by the LDA model. Essentially, we want to be able to

cluster events into one of two clusters, C1 or C2, using the posterior approximation and

the estimates of the theme distributions β̂t,m = β̂t,m(ρ,Σ) and the theme weights for each

event ω̂j,t = ω̂j,t(ρ,Σ). The mixed-membership model assumes that each event is already a

mixture of two types of underlying themes, so we could simply cluster the events by placing

cuts on ω̂j,1 for each event:

ω̂j,1 > c ⇒ ej ∈ C1 ,

ω̂j,1 ≤ c ⇒ ej ∈ C2 . (2.20)

Classifying events in this way does yield good classification performance, as demonstrated

in our earlier work [37]. The learned theme weights are obviously strongly correlated with

the learned themes, and we can actually construct a likelihood ratio classifier using the

learned themes directly. The likelihood ratio is a more widely used classifier in the HEP
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and ML communities, and in general we find comparable results when using the likelihood

ratio rather than the theme weights. With LDA we calculate the likelihood ratio as:

L(ej |ρ,Σ) =

nj∏
i=1

p(oj,i|β2)

p(oj,i|β1)

'
M∏
m=1

(
β̂2,m

β̂1,m

)I(m=oj,i)

, (2.21)

where I(·) is again the indicator function, equal to 1 when the expression in brackets is

true and equal to 0 when it is not. With the likelihood ratio we also need to perform a cut

in order to cluster the events,

L(ej |ρ,Σ) ≤ c ⇒ ej ∈ C1 ,

L(ej |ρ,Σ) > c ⇒ ej ∈ C2 . (2.22)

In expressions (2.21) (2.22) we included the dependence of the likelihood-ratio classi-

fier on the shape of the Dirichlet prior, through the two free parameters ρ and Σ. This

highlights that the two-theme LDA model leads to a (two-dimensional) landscape of clas-

sifiers L(ej |ρ,Σ), where different choices for the prior shape leads to different classifiers

with varying performance.

2.4.2 Evaluating the classifier performance

We can evaluate how well a particular classification technique performs using Monte-Carlo

generated data, for which we know the truth labels. Suppose we generate two samples of

events, sample 1 and sample 2, and we produce a mixed sample of events from both pure

samples. We can train an LDA model with T = 2 on this mixed sample to extract 2 theme

distributions that describe the data. We can then either use the extracted theme weights,

or the likelihood ratio to cluster the events in either C1 or C2 . Suppose the goal is to cluster

events from sample 1 into C1, and events from sample 2 into C2. We can test how well the

algorithm performs using the truth labelled data. We can compute the fraction of events

from sample 2 correctly assigned to C2 as a function of the cut, ε2(c). And analogously we

can compute the fraction of events from sample 1 incorrectly assigned to C2 as a function

of the cut, ε1(c). The Receiver-Operating-Characteristic (ROC) curve is then defined as

the curve tracing the true positive rate as a function of the false positive rate, i.e. ε2 (ε1).

Two measures we use to evaluate the performance of the LDA models we have trained are

1. Area Under Curve (AUC): the integrated area under the ROC curve.

2. Inverse mistag at fixed efficiency: ε−1
1 (ε2 = 0.5).

The AUC is a useful statistic when we are interested in the general performance of the

classifier. However when the experimental analysis is focused on identifying rare signals

in a sample of events, the AUC statistic is not always the most relevant indicator of

performance. What is required is a statistic which demonstrates a strong rejection of

background events coinciding with the acceptance of a moderately large number of signal

events. This is captured by the inverse mistag at fixed efficiency.
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2.4.3 Model selection with perplexity

Different Dirichlet prior shapes as encoded in the hyper-parameters will be more or less

suited for the classification task at hand, depending on the data composition and complex-

ity. For instance, suppose our aim is to extract rare ‘anomalous’ events from the data. We

would then like to classify events into two clusters: one ‘normal’ cluster C1 capturing the

bulk of events (e.g. SM events), and one ‘anomalous’ cluster C2 comprised of a rare events

with anomalous features (e.g. BSM). Such a classification is well described by a two-theme

LDA with a very asymmetric prior, i.e. ρ � 1. As we vary the hyper-parameters the

performance of the classifiers on the classification task is thus expected to vary greatly.

Therefore we need an unsupervised method for determining a near-optimal choice of the

hyper-parameters. Here we propose to do this using the model perplexity, defined in

eq. (2.17). This is an intuitive choice, since finding the hyper-parameters which maximise

the perplexity is equivalent to finding the hyper-parameters which maximise the ELBO.

In section 5 we study this strategy in detail by performing systematic scans over the

hyper-parameter space and correlating the relevant classification performance measures

with LDA model perplexity.

3 Learning latent jet substructure

So far we have introduced probabilistic generative models as a tool for analysing experimen-

tal data, in particular for extracting rare signals in a dataset. As an example of how this

works in practice, we apply LDA to the analysis of di-jet events. In this section we explain

how to represent di-jet events in terms of a sequence of exchangeable measurements oj,i,

and discuss how the mixed-membership model is well suited for describing di-jet events,

and finally we discuss our choice of oj,i representation and basis.

3.1 Jet de-clustering and substructure observables

When coloured particles are produced at high energy colliders the subsequent QCD show-

ering, fragmentation, and hadronization results in many hadrons in the final state. If the

transverse momentum of the initial particle is large enough, all of these final-state hadrons

will be registered by the detector within a single localised region in (η, φ). These clusters

of hadrons are referred to as jets, and there have been many different clustering techniques

developed to define jets based on the four-momenta of the constituent hadrons. Of these

different techniques, the sequential recombination schemes [63–67] have become the stan-

dard algorithms for jet clustering. When applied to data collected for a single collider

event, the algorithm can reduce the complexity of the data to a handful of jets, each rep-

resenting a final state of some high-energy parton produced in the hard collision. In order

to arrive at a single clustered jet from hundreds of hadrons, the sequential recombination

scheme goes through a set of pairwise intermediate clusterings in which the four-momenta

of two subjets are combined to form a larger subjet. De-clustering the jet and analysing

these individual splittings can provide crucial information into the physical processes tak-

ing place during the event. For example, if the initial particle is a top quark with a large

transverse momentum, the resulting jet will contain splittings that describe the decay of
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the top quark into a bottom quark and a W boson, and splittings describing the decay

of the W boson. These features are readily exploited by existing traditional top taggers,

see e.g. [68].

To analyse di-jet events with the probabilistic generative models outlined in this paper,

we extract measurements from each of these splittings in the (de)clustering procedure. At

each splitting we construct a number of observables using the four-momenta of the subjet

being de-clustered (j0), and the two subjets resulting from the declustering (j1 and j2), as

illustrated in figure 4. The process for doing this is straight-forward but we must decide

on a fixed set of observables to use throughout, this will be discussed in detail in section 4.

Once we have collected a set of measurements at a splitting, we must then bin their values,

e.g. according to the detector resolution, but more importantly according to what the

algorithm can realistically handle. The relationship between the size of the observable bins

and the algorithm performance is discussed in detail in section 4.4. One of these binned

lists of observables is what we refer to as a measurement oj,i in the probabilistic model.

Because of the binning there will be a finite (although possibly very large) number of values

that each oj,i can take. In addition to the kinematical observables at each splitting we add

one more categorical observable, that is a label identifying which jet the splitting belongs

to. With these methods we are describing the whole event rather than a single jet, so the

information to which jet a splitting belongs is important to properly characterise the whole

event. Of course, including measurements from all splittings in the jet clustering history

is not necessary, and would hinder the VI algorithm in extracting themes relevant for

describing a potential signal. Thus we need to impose cuts such that most of the splittings

that are irrelevant to uncovering rare signal events are removed, for example a simple cut

on subjet masses removing splittings of subjets with m0 < mcut could remove many of the

soft emissions occurring near the end of the QCD showering process. The whole process,

starting from the raw event data, can be described as follows:

1. Cluster the event with a large jet radius, and keep only the two hardest jets.

2. De-cluster each jet, extracting a list of measurements at each splitting.

3. Bin the measurements from each splitting appropriately, and assign a label identifying

which jet the splitting belongs to.

4. Apply kinematical cuts on the splittings.

An event is then described by an ordered sequence of oj,i each representing a splitting,

where each oj,i consists of a list of binned measurements and a label identifying which jet

the splitting occurred in. We would like to point out that this method, and the model in

general, does not rely on any specific clustering scheme. Any set of measurements which

describe substructure kinematics of the jets could be used.

3.2 Probabilistic models of jet substructure

At the core of the probabilistic models discussed in section 2 is De Finetti’s theorem. Under

the assumption that the measurements oj,i used to describe the events are exchangeable,

this theorem allows us to derive, based on additional modeling assumptions, the different
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Figure 4. In the left plot we show schematically how the sequential unclustering algorithm

proceeds, with the whole jet J being repeatedly separated into two subjets (j1 and j2 with mj1 >

mj2). In the right plot we then show how the feature representation of the data maps onto this

unclustering, with each oj,i being mapped to a node in the unclustering tree. Note that the ordering

of these oj,i terms with a single jet does not matter.

latent structures in mixture models and mixed-membership models. Constructing the

oj,i variables for jet substructure as described in the previous section is in line with the

exchangeability assumption. Sequential jet clustering algorithms do impose an ordering on

the splittings due to the pairwise nature of the algorithms and the procedure through which

the next subjets to be clustered are selected. However it is the kinematical properties of

the splittings that cary most of the interesting physical information, not the order in which

they occur, as shown e.g. in [69].

We see then that the latent themes in both the mixture and mixed-membership models

for di-jet events are probability distributions over the space of possible splittings (de-

clusterings) that can occur within the two leading jets. The generative processes for the

mixture model and mixed-membership (LDA) model are of course different. In a mixture

model a theme would ideally be associated to the specific (hard) partons produced in the

collision. Each splitting in an event described by a mixture model is sampled from just one

theme, therefore this theme must represent all of the physical processes occurring within

the jets produced within that event. In a mixed-membership model however, different

themes can be associated to different physical processes occurring within the jets of a single

event. Each event in a mixed-membership model is composed of a mixture of themes, just

as there are mixtures of different physical processes occurring within each event. The

theme proportions for each event are selected individually from a prior distribution, whose

parameters are important in the modeling. Measurements in each event are ‘generated’

by first sampling theme proportions from the prior, then for each splitting oj,i a theme is

drawn from the theme proportions, and a splitting is sampled from that theme.

As an example consider modeling a mixed sample of events consisting of QCD di-jet

events (pp → jj), and top quark pair-production events (pp → tt̄ → (W+b)(W−b̄) → jj)

where the top quarks are boosted enough such that the decay products of a single top

are clustered into a single jet. The splittings within a QCD jet will be predominantly

soft with the number of splittings at higher kT being monotonically suppressed. For the

top jets the decay chain also involves many coloured particles (the top, the bottom, the
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decay products of the W boson), therefore there will be many, predominantly soft, gluon

emissions occurring within the top jets as well. However there will always also be a few

hard splittings corresponding to the decay of the top quark to the bottom quark and W

boson, and the decay of the W boson to light quarks. Using a two-theme mixture to model

this event sample would ideally lead to one theme describing all the splittings within QCD

jets, and one theme describing both the hard (decay) splittings and soft (QCD) splittings

within the top jets. With a mixed-membership model on the other hand, the soft splittings

occurring within both the QCD and top jets can be modeled by one theme, with the other

theme describing just the hard splittings related to the decay dynamics inside top jets.

This seems like a natural setting in which to search for rare new physics signals in di-jets

at high-energy colliders.

3.3 Choosing a data representation for the jet substructure

The discussion so far has not been specific to which observables are to be measured at each

j0 → j1j2 splitting in the jets. In this subsection we will discuss and justify two bases of

observables, with each basis using a different cut to determine which splittings are included

in the analysis. Note that in the end we will only use a subset the observables from each

basis, as explained in more detail in section 4.

The first choice is what we refer to as the mass basis, see e.g. [50, 68]:

mass-basis:
{
m0,

m1
m0
, m2
m1
, kTm0

, cos θ
}

where m1 > m2.

These are the mass of the (mother) (sub)jet being de-clustered, the mother/daughter subjet

mass drop, the daughter subjets’ mass ratio, the kT distance between the daughter subjets

defined in the usual way as kT = pT,2∆, where ∆2 = (y2−y1)2 +(φ2−φ1)2, and the helicity

angle between the mother (sub)jet and the daughter subjets as defined e.g. in [53, 70]. In

this basis we only include splittings from the jets in which the subjet being de-clustered

has a mass m0 > 30 GeV.

The second choice is what we refer to as the Lund basis [69]:

Lund-basis :
{
m0, logR/∆, log kT , logR/κ, z, ψ

}
,

where R is the jet radius, z = pT,2/(pT,1 +pT,2), κ = z∆, ψ = tan−1(y2−y1)/(φ2−φ1), and

pT,1 > pT,2. In this basis we only include splittings from the jets which lie on the primary

Lund plane. The primary Lund plane is defined as the path through the clustering history,

starting from the clustered jet, and continually moving through the pairwise splittings to

the subjet with the largest pT until the end of the clustering history. One advantage of the

primary Lund plane compared to the mass-basis is that it offers a clearer interpretation

in terms of hard vs. soft (i.e. perturbative vs. non-perturbative) splittings, see ref. [69] for

details.

We emphasise that these two bases do not just differ in the observables (in fact both

bases include the subjet mass m0 and (log of) kT ), but the different cuts make a considerable

difference in the splittings which are used for the description of the jets. In section 4.4

we explore how some features of the dataset change as we vary the binning used for these
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observables. Here we only specify the default bin sizes: for the mass-basis observables

we bin the measurements in intervals of {10 GeV, 0.05, 0.05, 0.05, 0.1} , while for the Lund

basis we use {10 GeV, 0.2, 0.2, 0.05, 0.2, 0.2} .

The last thing to discuss in terms of the data representation are the jet labels. In

section 3.1 we discussed the importance of including jet labels to differentiate between

splittings occurring in the two jets, however we did not specify how these jets should be

labelled. Naively, because we select the jets according to pT , one might choose to also label

the jets in the same way with J1 being the jet leading in pT and J2 being the jet subleading

in pT , i.e. pT,J1 > pT,J2 . However this is not suitable in practice. In the top quark pair

production example discussed in previous subsection the ordering of the jet labels is not

so important, since both jets in the event are top jets and have the same decay structure.

However not all of the signals we may imagine will be so simple. In many cases, including

the new physics example studied in this paper, the two jets in the final state will have been

seeded by two different particles of different mass and thus they will both have distinctly

different decay dynamics. Being able to differentiate between these different structures

is not just important for classification, but is also important for a physical interpretation

of the themes learned through the VI algorithm. Therefore in the case where the signal

events contain two different jets, we would like to be able to associate the (J1, J2) labels

with splittings from one jet or the other, consistently across the whole sample. This will

not happen if we label the jets by their pT , instead the best way to do this is by labelling

the jets according to their jet mass mJ , such that m1 > m2.

4 Set-up and benchmarks

4.1 Algorithm set-up

There are a number of parameters that determine how the VI algorithm is implemented,

these have been discussed in section 2.3. In our benchmark examples we use the following

choices, which produce robust results across a wide range of scenarios: passes np = 200,

chunk size nc = 104, iterations L = 100, offset τ0 = 1000, αthresh = 10−8, decay κ = 0.5.

These choices are justified in section 5.1 where we discuss in particular how changing the

chunk size and the offset affects the convergence of the algorithm, and the performance of

the classifier.

4.2 Benchmark di-jet events

We perform our analysis using two benchmark scenarios, (i) boosted top quark pair-

production pp→ tt̄→ bb̄W+W−, and (ii) a hypothetical 3 TeV vector W ′ plus a 400 GeV

scalar φ model, with the dominant production and decay chain pp→W ′ →W (φ→WW ).

Since the choices of observables here focus only on the jet substructure, we consider only the

hadronic final states of the W bosons in both cases. Consequently, the main background

process in both scenarios is the QCD di-jet production. All event samples were generated

using aMC@NLO [71] interfaced with Pythia 8.2 [72] for showering and hadronization, and

FastJet 3.4.1 [73] for jet clustering. The events were generated at a collision energy of
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Figure 5. Distributions of QCD (left) and tt̄ (right) di-jet events in the (m0, m1/m0) plane. See

text for details.

13 TeV and the jets were clustered using the CA algorithm [66, 67] with R = 1.5. No

jet grooming was performed. Finally, for tt̄ (W ′), jets with pT < 300 (400) GeV were

discarded. The detector effects were not simulated, however we checked that the effects

of subcluster energy smearing consistent with the Delphes 3.4.1 [49] simulation of the

ATLAS detector had no significant effect on the results.

4.2.1 Boosted top quark pair-production

In the recent years the pp → tt̄ → bb̄W+W− process has become a standard benchmark

for supervised machine learning applications to particle physics [74]. Despite there being

no need for an unsupervised top tagging algorithm, we find that this is a nice example to

demonstrate the power of these techniques as applied to a physical process that is already

well measured and understood.

In figures 5 and 6 we plot the pure signal (tt̄ jets) and background (QCD di-jets)

samples in the (m0,m1/m0) and (logR/∆, log kT ) planes, respectively. We see in figure 5

that the hard splittings corresponding to the decay of the top quark to the W boson and

the decay of the W boson to light jets are clearly discernible. The top quark decay is

indicated by the two clusters (overdensities) of measurements at m0 ' 175 GeV, with the

cluster at m1/m0 ' 1 being due to the clustering of light radiation around the subjet

containing all of the top quark decay products, while the cluster at m1/m0 ' mW /mt

corresponds to the splitting that separates the bottom and W subjets from within the top

jet. The decay of the W boson is indicated by the two clusters at m0 ' 80 GeV. Again the

cluster at m1/m0 ' 1 is due to the clustering of soft radiation around the subjet containing

the W boson decay products, while the cluster at lower mass drop shows splittings that

separate the decay products of the W boson. The fact that this cluster is at m1/m0 ' 0.2
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Figure 6. Distributions of QCD (left) and tt̄ (right) di-jet events in the (log kT , logR/∆) plane.

See text for details.

does not indicate that the W boson is decaying to a state of mass ' 0.2mW , instead this

is an artifact of the definition of mass drop m1/m0 with m1 > m2 ordering. In mass drop

we take m1 to be the heaviest of the subjets in the splitting, therefore the distribution

of the mass drop is skewed away from zero. If we instead had plotted m2/m0 we would

see that this cluster is pushed towards m2/m0 ' 0. The (m0,m1/m0) distribution for the

background QCD jets is smooth and monotonically decaying at large m0 and small m1/m0.

In figure 6 we see that the splittings corresponding to the hard decays of the top

quark and the W boson are indicated by the two overlapping clusters at log kT ' 5 and

logR/∆ ' 1. Apart from the obvious difference in choice of observables here, we should

also keep in mind that the actual splittings which pass the cuts here are different than

those that pass the cuts in figure 5 (see section 3.3). This choice leads to a larger overlap

between the background and signal distributions, as seen by the stream of splittings at low

log kT , however there is still a good separation between the features that distinguish the tt̄

jets from the QCD background jets.

4.2.2 A 3 TeV W ′ model with a 400 GeV scalar

The second benchmark is an example of a new physics signature which could be searched for

at high-energy colliders using these techniques. The new physics process is the production

of a 3 TeV W ′ boson at a collision energy of 13 TeV, which decays to a SM W boson and

a 400 GeV new physics scalar boson φ. The scalar boson φ then subsequently decays to

two SM W bosons. The model has been introduced and previously studied in [13, 20, 26].

For the study in this paper we consider only the hadronic final states of the W bosons.

The mass difference between the W ′ and its decay products mean that the constituents

from the scalar boson and the W will be clustered into a pair of boosted jets, making the
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Figure 7. Distributions of QCD (left) and W ′ (right) di-jet events in the (m0, m1/m0) plane. See

text for details.

jet substructure an important tool for any analysis of these events. This was first studied

in [20] and used as a benchmark for the unsupervised CWoLa search technique in [13].

In the precursor to this paper [37] this example was also used. For this benchmark, in

addition to the pT cut at 400 GeV, events were selected in the di-jet invariant mass window

[2700, 3300] GeV to encapsulate the peak in the production cross-section of the W ′ boson.

In figures 7 and 8 we plot the pure signal (hadronic W ′ final states) and background

(QCD di-jets) samples in the (m0,m1/m0) and (logR/∆, log kT ) planes, respectively. The

origin of the features in these plots is completely analogous to those for tt̄ in figures 5 and 6.

One important difference to note is that the plots for the leading and subleading signal jets

are different, while for tt̄ they were equivalent. This is obviously because here our signal

consists of two jets of different origin. This highlights the importance of including labels for

the jets in our representation of the measurements in LDA, in order to properly characterise

the signal from the posterior theme distributions. In figure 7 we can clearly see the clusters

corresponding to the decays of the scalar boson in the leading jet at m0 ' 400 GeV. Of

the two clusters at m0 ' 400 GeV the mass drop m1/m0 ' 1 again corresponds to the

clustering of soft radiation around the subjet containing all of the scalar boson decay

products, while the cluster at m1/m0 ' mφ/mW ′ corresponds to splittings that separate

the SM W boson subjets from within the φ jet. The clusters corresponding to the decay

of the SM W bosons at m0 ' 80 GeV have the exact same features as those in the tt̄ case.

The distributions for the background jets in figure 8 are similar to the distributions for

the background jets in figure 6, as expected. Interestingly, the distributions for the W ′

and tt̄ signal jets in figures 8 and 6 are more similar than they are in figures 7 and 5.

This is because the observables in the former case measure the kT and angular separation,

rather than the masses of the (sub)jets in the splittings. Also, the observables are now
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Figure 8. Distributions of QCD (left) and W ′ (right) di-jet events in the (log kT , logR/∆) plane.

See text for details.

both binned and displayed on a logarithmic scale, making any differences at large kT less

pronounced. One obvious difference between the W ′ and tt̄ distributions in figures 8 and 6

is that the clusters associated with the different hard decays are more distinguishable from

each other in the W ′ case than in the tt̄ case. This is primarily because the mass difference

between the scalar boson φ and the SM W bosons is much larger than the mass difference

between the top quark and the SM W bosons. Another difference is in the amount of soft

radiation in the tt̄ jets and the W ′ jets, this is due to the top quark carrying color charge

and the φ boson being color-neutral. The similarities in the two distributions do however

suggest that any classifier selecting events with splittings in the large kT region may work

reasonably well as a generic anti-QCD tagger.

4.3 Comparing classification power of different observables

There are many possible choices of observables that we could include in our analysis of

di-jet events using LDA. All of the observables discussed in section 2 carry some ability

to distinguish between signal events and QCD background events, and some observables

will be more useful than others depending on what the signal process is. In this section

we study the classification power of each of these observables, and some combinations

of them, using a simple binned likelihood classifier. To construct the binned likelihood

classifier we split our signal and background datasets each into ‘training’ and ‘testing’

sets. We then compile counts of how often each measurement bin occurrs in each of the

signal and background training sets, and normalise these to give us a discrete probability

distribution for the signal and background samples. For each event in the testing sets we

then compute the likelihood ratio as defined in eq. (2.21), except with the β’s replaced

with the binned likelihood multinomials. The results are summarised in figure 9. First
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Figure 9. Classification power of individual observables (left column) and pairs of observables

(right column) for both tt̄ (top row) and W ′ (bottom row) signals versus QCD. We consider both

mass basis observables (solid lines), and observables in the primary Lund plane (dashed lines).

thing to notice is that the observables are in general better at classifying W ′ events than tt̄

events, the obvious reason being that the W ′ signal contains splittings that are very rare

in QCD background events, in particular rarer than the splittings in tt̄ events. In the first

row we show the classification performance of the observables for the tt̄ sample. The best

performing individual observables are logR/∆ and m0 from the Lund basis. Note that

m0 appears twice, once in the mass basis and once in the Lund basis. The difference in

classification power here comes only from the cuts performed on the dataset, because in the

mass and Lund bases these cuts differ, as explained in section 3.3. In combining observables

we see that the best performing pair of observables in the Lund basis are log kT and z. In

the mass basis the best performing pair are m0 and kT , however the differences between

this pair and others are miniscule. In the second row we in turn show the analogous plots

demonstrating the classification power of the observables for the W ′ sample. The results

here are different than for tt̄, which is not surprising since not only are the masses of the

particles produced in the collision different, but also the top quarks are coloured, have spin

1/2, and therefore produce a very different radiation pattern than the W ′ decay products

(colourless W with spin 1 and φ with spin 0). The best performing individual observable

here is the subjet mass m0 in both bases, mass and Lund. In combining observables we

find that the best performing pair of observables in the Lund basis are m0 and log kT ,
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while in the mass basis the best performing pair are m0 and m1/m0. Again the differences

between these pairs and some of the others are very small. We do not study combinations

of more than two observables, because we find that adding more observables to the best

performing pairs does not provide any appreciable difference in classification power of the

binned likelihood.

Interestingly however, we have also found that the observables which provide the best

performance with the supervised binned likelihood classifier are not necessarily the best to

use in an unsupervised analysis based on LDA and VI, which crucially depend on patterns

of concurrence of two or more measurements within the same event. Therefore in the

unsupervised analyses we focus solely on two pairs of observables (i) (m0, m1/m0), (ii)

(log kT , logR/∆), based on their robust performance, good interpretability and since they

are already commonly used in jet classification tasks. Note that while the classification

power of any combination of observables in the supervised binned likelihood does not

necessarily indicate the best choice to use in any given analysis, according to the Neyman-

Pierson lemma [75] it does represent an upper bound on the classification power of any

unsupervised classifier based on the corresponding themes of these same binned observables,

as extracted from LDA.

4.4 Measurement co-occurrences

When introducing LDA and VI in section 2 we first encountered the importance of measure-

ment co-occurrence in individual events. Certain measurements within individual events

must exhibit a pattern of co-occurrences in order for the inference algorithm to recognise

and extract the corresponding theme distributions. In other words, VI is unable to extract

any information from unique measurements oj,i appearing only once in the dataset. In this

section we explore how the measurement co-occurrences in a dataset vary with the choice

of observables and their binning, highlighting the importance of the data representation in

the construction of the unsupervised classification strategy. We demonstrate this on the

example of the W ′ model, while we have checked that the tt̄ example exhibits analogous

behaviour.

We quantify the measurement co-occurrences by calculating the number of unique oj,i
per bin of one of the observables, marginalising over the rest, and dividing this by the

total number of measurements in that bin. The lower this ‘fraction of unique oj,i’ is the

stronger the co-occurrences are, and the easier it will be for the VI algorithm to extract

themes accurately describing the underlying structure of the events. In the upper row of

figure 10 we show how the co-occurrences in the mixed W ′-QCD sample with observables

(m0, m1/m0, m2/m1, kT , cos θ) vary per m0 bin. On the left hand side we do this for

a mixed sample of 9×104 signal and background events with varying S/B, while on the

right hand side we do it for varying amounts of pure signal events (100, 500, and 1000).

We focus on such small numbers of signal events because we are interested in finding rare

signals, in which the co-occurrences will inevitably be less apparent. Conversely, in a

sample containing a large fraction of signal events the structure of the signal events would

be more easily uncovered due to the strong co-occurrences between the measurements. As

expected, the co-occurrences are strongest at m0 ' mW and m0 ' mφ, since the signal
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Figure 10. Fraction of unique measurements in W ′ event samples, using all the mass basis ob-

servables (m0, m1/m0, m2/m1, kT , cos θ) (top line) and only the pair (m0, m1/m0) (bottom line).

On the left we show samples of 9×104 events consisting of different fractions of mixed signal (W ′)

and background (QCD) events, while on the right we show the results for different numbers of pure

signal (W ′) events.

events are more likely to contain splittings with these masses (see figure 7). However, as

discussed in the previous subsection, including more than two of these observables in the

analysis does not significantly increase the classification power of the binned likelihood

classifier. At the same time we demonstrate in the second row how restricting the analysis

to including just one such pair (m0, m1/m0) can drastically increase the strength of the co-

occurrences in the event sample. This provides further justification for including no more

than two observables in the LDA analysis. In figure 11 we display the same information for

the Lund observables where we measure the co-occurrences as a function of log kT . We see

again that the co-occurrences are strongest at the points where the signal features are most

pronounced (see figure 8), and that by restricting the observables used at each splitting we

can increase the frequency of these co-occurrences significantly.

Before moving on we examine another handle we have on increasing co-occurrences in

the event sample, that is by varying the binning used for each of the observables. To do this

we keep with the W ′ sample and focus on just the pair of (m0, m1/m0) observables. The

results are summarised in figure 12. We note that some of the bin sizes used in this plot

would be impossible to use in practice due to the finite experimental resolution, however

they still serve as useful examples to demonstrate the potential effects of varying bin sizes in

the analysis. In the upper left plot we show the co-occurrences for the whole mixed sample
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Figure 11. Fraction of unique measurements in W ′ event samples, using all the Lund basis

observables (m0, logR/∆, log kT , z, logR/κ, ψ) (top line) and only the pair (log kT , logR/∆)

(bottom line). On the left we show samples of 9× 104 events consisting of different fractions

of mixed signal (W ′) and background (QCD) events, while on the right we show the results for

different numbers of pure signal (W ′) events.

with S/B=5% and four different choices of bin sizes. In each of the other three plots we

then show the co-occurrences for different numbers of signal events (again 100, 500, and

1000) and varying bin sizes. As expected, larger bin sizes result in stronger co-occurrences,

however the size of this effect is not as large as the effect of removing observables from

the analysis completely. For example, in all cases the strength of the co-occurrences at

m0 ' mW is almost the same for all choices of the binning. The effect due to different bin

sizes is more clearly seen away from these areas of strongest co-occurrence, where larger bin

sizes result in stronger co-occurrences across the whole m0 range. In particular, this may

aid in better modeling of the signal and background distributions away from m0 ' mW

and m0 ' mφ. On the other hand, increasing the bin size will also make the signal features

less pronounced, potentially reducing the classification power in the same way as a binned

likelihood classifier becomes worse and worse approximation to the Neyman-Pearson un-

binned likelihood. Therefore there is trade-off here between potential classification power

and the ability of VI to extract optimal theme distributions from the data. In particular we

find that the constant δm0 = 10 GeV bin size provides the best trade-off for the examples

studied here and is also in practice close to the variable binning δm0 = 0.05m0 mimicking

the typical (energy) resolution of modern particle detector calorimeters.
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Figure 12. Fraction of unique measurements in W ′ event samples, using the mass basis observables

(m0, m1/m0) for different choices of m0 binning. From top-left to bottom-right: results for a mixed

sample of 9×104 events with S/B = 5% and four different choices of bin sizes, followed by results

for 100, 500 and 1000 pure signal events at various bins sizes of δm0 = 2 GeV, 10 GeV 50 GeV, and

0.05×m0.

5 Unsupervised learning with LDA

We now present results from an application of the technique outlined in the preceding

sections. Using the W ′ benchmark outlined in section 4.2.2 we construct a number of

mixed event samples, i.e. mixtures of background and signal events. The mixed samples

contain 9 × 104 events with S/B ratios: 0.1, 0.05, 0.025, 0.01, and 0.005. We also include

a pure background sample (S/B=0) to demonstrate what the output of LDA looks like

with no signal events present. For the demonstration in this section we will use the Lund

plane basis of observables outlined in section 3.3 and section 4.3. The truth level Lund

plane distributions for the signal and background events in the W ′ benchmark are shown in

figure 8. The background QCD events are described by smooth distributions in which the

low log kT regions depict the non-perturbative splittings in the QCD jets. For the signal

events we see a different behaviour, with both the leading and subleading jets displaying

localised high density regions corresponding to the decays of the 400 GeV scalar boson and

the W bosons. Identifying these localised high-density regions is crucial to achieving a

high-performing classifier.
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For each event sample, 6 in total, we train LDA models with different Dirichlet param-

eters, extract the themes, and use them to cluster/classify the events in the sample. We

perform an extensive scan over the Dirichlet parameters, scanning over the (ρ,Σ) parameter

space in the ranges −3 ≤ log10 ρ ≤ 0 and 0 ≤ Σ ≤ 3 with resolution δ log10 ρ = 0.1 and

δΣ = 0.1, respectively. This means training 961 models for each event sample. For each

sample we plot the inverse perplexity (P−1) calculated over the whole sample, as well as

the AUC, and the inverse mistag at fixed efficiency, both calculated on separate pure signal

and background samples. In particular, we are interested in how the inverse perplexity,

which can be computed from unlabelled data alone, is correlated with the performance of

the classifier (AUC and ε−1
b (εs = 0.5)), which is inaccessible in absence of labelled data. We

also consider how both the inverse perplexity and performance behave in different regions

of the Dirichlet parameter space, as discussed in section 2.2.

The results of the scan are presented in figure 13. The first immediate result is the

strong correlation between the perplexity measure and the performance of the classifier. In

both the perplexity and the performance landscape scans we see a ridge-like structure at

ρ→ 0 and Σ < 0.5, beyond which the performance of the classifier degrades. In the Σ → 0

limit the LDA model becomes more and more like a mixture model rather than a mixed-

membership model. In this case it is known that variational inference techniques tend to

perform badly when describing datasets whose themes share features [40] (see section 2.1.1).

Given that both our signal and background events share similar non-perturbative features,

it is expected that we see this degradation in performance at low Σ. In the ρ → 0 limit

we also see a degradation in the perplexity, along with a more subtle degradation in per-

formance. This again is expected, since in the vanishing ρ limit the LDA model effectively

consists of just a single theme and is thus less sufficient in describing the data. One interest-

ing point worth mentioning here is that even in the S/B=0 limit the classifiers retain some

classification power. This is entirely due to an anti-QCD tagging effect, where the LDA

model learns the QCD theme distribution and one other distribution which is typically a

mixture of QCD features and random noise. Then through the likelihood ratio these themes

will result in a classifier which tends to assign lower values to events which are QCD-like.

We also note that in this case the performance is more uniform in ρ and Σ than for the

large S/B cases, however the ridge-like structure still persists because both at low Σ and

at large ρ the variational inference algorithm tends to split the QCD features between the

two themes. This results in a classifier which does not perform well at anti-QCD tagging.

The green star in figure 13 indicates the point of minimum perplexity for the S/B=5%

case, which would be selected as the optimal model in a realistic unsupervised analysis.

When comparing with the truth-level distributions in figure 8 we see that the typical signal

features are well distinguishable in one of the themes (theme 2). The two clusters in the

leading jet distribution of this theme correspond to the decays of the φ boson and the W bo-

son, with the single cluster in the subleading jet corresponding to the decay of the W boson.

As in the mass basis example for boosted tt̄, we observe some notable differences when com-

paring the two themes to pure signal and background distributions, especially in the soft

(kT → 0) and collinear (∆ → 0) regions of the Lund plane. Theme 2 predominantly cap-

tures the hard splittings associated with the massive resonance decays, while the softer split-
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Figure 13. Results of LDA models in the (ρ,Σ) parameter-space trained on samples of mixed W ′

and QCD events using Lund basis observables log kT and logR/∆, with different S/B ratios (one

per row). Each row contains plots of perplexity, AUC, and inverse mis-tag rate at fixed efficiency

(see text for details). The green star indicates the model used to plot the theme distributions in

figure 14.
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Figure 14. The LDA extracted theme 1 (left) and theme 2 (right) distributions for the leading

(upper plots) and subleading (lower plots) jets obtained on a mixed W ′ / QCD sample with S/B

at 5%, where only the log kT and logR/∆ observables were used. Shown are results for the model

with priors ρ = 0.1 and Σ = 1 which yields the biggest inverse perplexity. See text for details.

tings are predominantly captured by theme 1. Interestingly, it seems that the algorithm in

this case picked up some distinguishable features of the signal (a deficit below the W peak)

even in the non-perturbative (low kT ) regime. We warn however that these effects are very

subtle and the least robust, since they vary considerably dependent on the model priors.

In appendix A we present results from similar scans for the W ′ benchmark using

the mass basis observables, and the tt̄ benchmark using both the Lund and mass basis

observables.

5.1 Systematics

In order to use the techniques presented above in practice it is important that the VI algo-

rithm produces results which are stable under changes in the random initialisations of the

model variables, i.e. the random seed. Also important is to verify that the algorithm pa-

rameters chosen for the inference procedure (see section 2.3) are sensible given the datasets

being used. The most important algorithm parameters here are the offset (τ0), the chunk

size (nc), and the number of passes (np). The offset affects the learning rate, both the

overall magnitude and as a function of the global updates, see eq. (2.16). The chunk size

changes how many events are used to optimise the local parameters before an update on

the global parameters is performed. Finally, the number of passes must simply be large

enough such that the algorithm converges.

5.1.1 Offset

We start with the offset, and to be clear what the actual consequences of particular offset

values are in the inference algorithm, we show in figure 15 how the offset affects the learning
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Figure 15. The learning rate as a function of the number of global updates for different offsets,

τ0 = 1-105. The black dashed line indicates the learning rate after 100 passes when we have 105

events in the sample and a chunk size of 104, as in the scans in section 5 and appendix A.
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Figure 16. The inverse perplexity (left), AUC (center), and inverse mistag rate (right) as functions

of the offset for an event sample with 105 events and a chunk size of 104. The calculations were

done for 100 different random seeds, the blue lines show the mean of these and the shaded regions

cover the upper and lower standard deviations. Separate upper and lower standard deviations are

used to show how the actual variances in the performance statistics are typically skewed heavily

towards the negative side.

rate (δn) as a function of the number of global updates. We see that the larger offsets

inevitably mean a smaller learning rate, but also a learning rate which is more constant

across the global updates. Smaller offsets lead to very large learning rates at earlier global

updates, and larger learning rates overall.

To demonstrate the effect that the learning rate and offset have on the results, we have

chosen a single parameter point from the scans performed on the W ′/QCD mixed event

sample, with S/B = 2.5% and [ρ,Σ] = [0.05, 1.3] in the mass basis. We keep all of the

parameters as they were in the scan, except now the offset is varied from 1 to 2×105. For

each offset we calculate the perplexity, the AUC, and the inverse mistag rate so that we can

analyse changes in performance. To assess the stability of the algorithm as a function of

offset we repeat this for 100 different random seeds, calculating the mean and the (upper

and lower) standard deviation of the resulting distribution. These results are shown in

figure 16.
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Figure 17. Number of passes needed for convergence as a function of the offset, for an event sample

with 105 events and a chunk size of 104. The calculations were done for 100 different random seeds,

the blue lines show the mean of these and the shaded regions cover the upper and lower standard

deviations. Separate upper and lower standard deviations are used to show how the actual variances

in the number of required passes are skewed with respect to the mean.

The first clear effect we see is that both the perplexity and the performance of these

models increase with the size of the offset, degrading heavily at low offsets. The reason for

this is simple, the learning rate is too large to sufficiently resolve the maxima in the ELBO.

We also see that the random seed induced variance of the results increases considerably at

low offsets. This is partially due to the overall size of the learning rate, but is also affected

by the significantly increased learning rate in the initial global updates, as can be seen in fig-

ure 15. Because the chunks of data are sampled randomly at the beginning of the analysis,

a different random seed means that a different subset of the data will have more influence on

the inference, hence the larger variance. The second effect we see is the change in behaviour

at very large offset. The AUC and inverse mistag are both good measures of performance

for the model so we might expect that an increase in one leads to an increase in the other,

however we see here that this is not the case. At offset ∼ 104 the AUC begins to degrade

while the inverse mistag at fixed efficiency of εs = 0.5 continues to improve somewhat.

The learning rate also affects the speed of convergence of VI. In the algorithm described

in section 2.3 we allow the algorithm to run for a fixed number of passes over the data

without checking for convergence. However one could easily change this to check explicitly

for convergence and end the algorithm early. In figure 17 we look at how many passes over

the data the algorithm takes to converge, seeing that runs with larger offsets take much

longer to converge. This is easily understood due to the smaller learning rate implied by

larger offsets.

From these observations we deduce that an offset in the range 103–104 is the best

choice for both the performance and stability of the inference algorithm as applied to our

example datasets. Correspondingly, the suitability of a particular offset choice on other

datasets can be readily verified by checking for convergence as well as model perplexity

dependence on this algorithm parameter.
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Figure 18. The inverse perplexity (left), AUC (center), and inverse mistag rate (right) as functions

of the offset for an event sample with 104 events and a chunk size equal to the size of the event

sample. The calculations were done for 100 different random seeds, the blue lines show the mean of

these and the shaded regions cover the upper and lower standard deviations. Separate upper and

lower standard deviations are used to show how the actual variances in the performance statistics

are typically skewed heavily towards the negative side.

5.1.2 Chunk size

In the prior scans the chunk size was 104 while the samples contained almost 105 events, i.e.

10 chunks per pass over the sample. Since we are looking for rare signals it is possible that

the signal events could be very unevenly distributed throughout these different chunks,

resulting in each chunk having significantly different perplexity, i.e. ELBO. Therefore the

algorithm would essentially be attempting to optimise one model for these 10 different

chunks, and the resulting posterior approximation would fail to accurately describe the

true posterior. To test that this is not an issue in the scans, we have performed the same

offset scan as in figure 16 but now for a smaller event sample (104 events), where the

global updates are performed only after seeing the whole dataset, i.e. the chunk size is

equal to the size of the event sample. We see these results in figure 18 and it is clear that

while they differ slightly, qualitatively the same behavior is observed in the perplexity and

performance at different offsets.

To properly study the effect of changing the chunk size we need to find a better way to

compare models trained with different chunk sizes. Changing the chunk size significantly

affects how much of the data the algorithm analyses before it converges, and we would like

to disentangle this effect from the effect due to less data being analysed per global update

in the algorithm. To do this we vary the offset simultaneously with the chunk size such that

the learning rate at one pass over the data is held constant. The example we use is again

the W ′/QCD mixed sample of a total 104 events, with S/B = 2.5% and [ρ,Σ] = [0.05, 1.3]

in the mass basis. The learning rate is held constant to what it would be if we had an

offset of 103 and a chunk size also equal to 104 events. The chunk size is varied from 10 up

to 104, meaning that the offset varies from 1 to 1000. The results are shown in figure 19,

where we clearly see the disadvantages in using very small chunk sizes. When the chunk

size reaches O(5%) of the size of the event sample the perplexity and performance statistics

reach a plateau. As we vary the chunk size we see that the results are not very sensitive
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Figure 19. The inverse perplexity (left), AUC (center), and inverse mistag rate (right) as functions

of the chunk size for a mixed W ′/QCD event sample with 104 events and a chunk size equal to

the size of the event sample. The offset is also varied such that the learning rate is held constant.

The calculations were done for 100 different random seeds, the blue lines show the mean of these

and the shaded regions cover the upper and lower standard deviations. Separate upper and lower

standard deviations are used to show how the actual variances in the performance statistics are

typically skewed heavily towards the negative side.

to the random seed. This is because the learning rate is kept at a constant (small enough)

value by also varying the offset accordingly.

So while choosing the chunk size to be equal to the size of the event sample is certainly

a good idea, especially with smaller datasets and rare signals, we conclude that for the event

samples that we have analysed in this paper setting the chunk size to only a fraction of

total dataset does not significantly impede the quality or robustness of VI while significantly

improving its convergence. In particular, our reasoning in choosing the chunk size to be

104 rather than 105 for our prior scans in sections 5 and appendix A is thus simply that

the algorithm converges 10 times faster.

6 Conclusions

In this work we have described a general unsupervised framework capable of learning rare

patterns in event data collected at high-energy colliders. We use a Bayesian probabilis-

tic modeling technique called Latent Dirichlet Allocation (LDA), an unsupervised ML

approach that was first introduced in the context of BSM collider physics in a previous

paper [37]. We started by representing individual collider events as sequences of binned

exchangeable measurements, and assumed a simplified picture in which the events are

generated by sampling these measurements from some underlying joint probability dis-

tribution. The assumption of exchangeability of measurements guarantees, through de

Finnetti’s theorem, that the sequence of measurements in an event are conditionally de-

pendent on a latent variable sampled from a (marginalised over) prior distribution over

a latent space. Through some basic assumptions on this latent space we arrived at the

LDA model, which we focus on throughout the paper. LDA is a mixed-membership model,

meaning that under this model the measurements in individual events are assumed to

have been sampled from multiple (two, in our case) different multinomial distributions —
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themes. These themes encode information on the underlying structure, i.e. hidden patterns,

in the event data represented in terms of binned measurements. The mixing proportions of

themes are sampled from a prior taking the form of a Dirichlet distribution, a parametric

family of distributions over the simplex. Mixed membership models have the advantage

of describing different events which share features arising from the same underlying physi-

cal source. Depending on the Dirichlet prior, the generative model can naturally describe

event samples where certain combinations of measurements appear rarely, which is crucial

for uncovering rare signals. Given the LDA model and the event data, we described in

detail a stochastic variational inference technique for approximating or learning the under-

lying themes from which the data is assumed to have been generated. We then described

how the extracted themes can be used to construct a classifier to cluster events into two

categories, potentially aligned with the background and signal classes. We finally identified

a measure of classification performance based solely on the learned themes, the perplexity,

which does not require truth labels to compute and can thus be extracted directly from

mixed data. In particular, we found that perplexity correlates strongly with the widely

used traditional measures of classification performance based on the ROC curves — the

AUC and inverse-mistag rate at fixed efficiency, which do require truth labels.

To demonstrate the power of this technique we considered the analysis of di-jet events

at the LHC focusing on two benchmark examples; boosted SM tt̄ production and a hypo-

thetical BSM production of W ′ → (φ→WW )W . We described in detail how to pre-process

the event data to express each event as a sequence of exchangeable measurements, and how

the generative model for di-jet events is to be interpreted using LDA. Our choice of jet

substructure observables that we used in the analysis is based upon high level observable

combinations that have previously been shown to be good for identifying massive resonance

decay chains within large radius jets with supervised methods: the traditional mass drop

basis (see e.g. ref. [53]) and the primary Lund plane basis [69].3 Through a study of the

classification power of these different observables, and of how strong their co-occurrences

are in the data, we have identified most promising pairs of observables in each basis for our

unsupervised classification approach.

The results for each of the benchmark di-jet examples from this study are presented in

section 5. Using the perplexity, AUC, and inverse-mistag rate at a fixed signal efficiency as

performance indicators, we analysed how well the two-theme LDA models classified events

over a large range of values of Dirichlet prior parameters (ρ,Σ). For each benchmark we

considered six different samples with varying S/B, ranging from 0.01 to 1.0 for the boosted

top-quark example, and from 0.005 to 0.1 for the W ′ example, including background only

samples for reference. For both benchmarks the mass drop observables generally outper-

form the Lund observables in classification, however both choices lead to complementary

results with the extracted themes in each case holding valuable information about the sig-

nal and background processes. From the results it is clear that the inference algorithm

3We note in passing the in principle LDA can be trained on any general combination of high-level

observables used in supervised classification that has significant discriminating power, thus in principle

allowing to promote supervised classifiers to unsupervised ones, given enough measurement co-occurances

in the data.
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was able to separate measurement patterns corresponding to the massive resonance decays

within the signal jets from patterns corresponding to light QCD emissions present within all

jets. This is achieved due to the mixed-membership nature of the generative model, where

QCD-like patterns found both in the signal and background jets were identified as having

been sampled from the same theme describing QCD-like splittings in the jet substructure.

Finally, in section 5.1 we studied how the results and performance of the chosen infer-

ence technique depend on the tunable parameters of the algorithm, in particular the chunk

size and the offset. We demonstrated that the results of the algorithm are in fact stable

over a large range of these parameters, and that the algorithm tends to converge within

. 100 passes for the example datasets.

Perhaps the most important result of this work is that over the (ρ,Σ) Dirichlet param-

eter plane the AUC and inverse-mistag rate, calculated using truth label information, are

strongly correlated with the perplexity, which is calculated without truth label information.

This implies that, not only can perplexity be used as a practical measure to assess LDA

model convergence, but it can also provide guidance when selecting the most viable and

robust Dirichlet priors for unsupervised collider analyses and searches. By allowing the

algorithm to select optimal ρ and Σ parameters we would not need to perform a search for

each choice of parameters considered, meaning that there would be no contribution to the

trials factor due to these parameters. This result is a crucial step towards the next part

of this work programme, constructing a full unsupervised di-jet search strategy for new

physics at the LHC using LDA. In a recent letter [36] the ATLAS collaboration published

an analysis of a weakly supervised di-jet resonance search in which contributions to the tri-

als factor associated to the masses of the final state jets are eliminated by allowing the ML

algorithm to define the classifier using the event data alone. We would like to stress that

the method presented in this paper also benefits from such a reduction in the trials factor.

In fact, because we represent each jet as a sequence of splittings corresponding to possibly

many massive resonance intermediate decays, this method has the potential to describe ar-

bitrarily complicated jet substructure signatures without paying any penalty in the trials

factor. We reserve a full discussion of the search strategy to an upcoming publication.

After this detailed study of the LDA method applied to new physics searches in di-jets

we can conclude that probabilistic latent variable models offer a unique and promising

avenue for future study. The first significant result is that the perplexity, related to the

model evidence, can be used as a model-independent measure to select the optimal hyper-

parameters for the LDA model, and we described the physical significance of these hyper-

parameters in connection with abundances of signal and background-like features in the

data. We also presented further understanding of how this method works in terms of feature

co-occurrences in the data, and how these affect the performance of the variational inference

algorithm. This intuitive understanding illuminates a drawback in the approach, in that

we are limited to using a small number of physical observables in the analysis due to the

infamous curse of dimensionality, and the associated sparsity of individual measurements.

The results in this paper provide a theoretical underpinning of the technique and results

first presented in [37], and pave the way for future collider studies using probabilistic latent

variable models such as LDA.
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Figure 20. Results of LDA models in the (ρ,Σ) parameter-space trained on samples of mixed tt̄

and QCD events using mass basis observables m0 and m1/m0, with different S/B ratios (one per

row). Each row contains plots of perplexity, AUC, and inverse mis-tag rate at fixed efficiency (see

text for details). The green star indicates a maximum perplexity point.
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Figure 21. Results of LDA models in the (ρ,Σ) parameter-space trained on samples of mixed tt̄

and QCD events using Lund basis observables log kT and logR/∆, with different S/B ratios (one

per row). Each row contains plots of perplexity, AUC, and inverse mis-tag rate at fixed efficiency.

See text for details.
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Figure 22. Results of LDA models in the (ρ,Σ) parameter-space trained on samples of mixed W ′

and QCD events using mass basis observables m0 and m1/m0, with different S/B ratios (one per

row). Each row contains plots of perplexity, AUC, and inverse mis-tag rate at fixed efficiency. See

text for details.
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