3 research outputs found
Essays on volatility forecasting
Stock market volatility has been an important subject in the finance literature for which now an enormous body of research exists. Volatility modelling and forecasting have been in the epicentre of this line of research and although more than a few models have been proposed and key parameters on improving volatility forecasts have been considered, finance research has still to reach a consensus on this topic. This thesis enters the ongoing debate by carrying out empirical investigations by comparing models from the current pool of models as well as exploring and proposing the use of further key parameters in improving the accuracy of volatility modelling and forecasting. The importance of accurately forecasting volatility is paramount for the functioning of the economy and everyone involved in finance activities. For governments, the banking system, institutional and individual investors, researchers and academics, knowledge, understanding and the ability to forecast and proxy volatility accurately is a determining factor for making sound economic decisions. Four are the main contributions of this thesis. First, the findings of a volatility forecasting model comparison reveal that the GARCH genre of models are superior compared to the more ‘simple’ models and models preferred by practitioners. Second, with the use of backward recursion forecasts we identify the appropriate in-sample length for producing accurate volatility forecasts, a parameter considered for the first time in the finance literature. Third, further model comparisons are conducted within a Value-at-Risk setting between the RiskMetrics model preferred by practitioners, and the more complex GARCH type models, arriving to the conclusion that GARCH type models are dominant. Finally, two further parameters, the Volatility Index (VIX) and Trading Volume, are considered and their contribution is assessed in the modelling and forecasting process of a selection of GARCH type models. We discover that although accuracy is improved upon, GARCH type forecasts are still superior
Volatility forecasting across tanker freight rates: The role of oil price shocks
This paper examines whether the inclusion of oil price shocks of different origin as exogenous variables in a wide set of GARCH-X models improves the accuracy of their volatility forecasts for spot and 1-year time-charter tanker freight rates. Kilian’s (2009) oil price shocks of different origin enter GARCH-X models which, among other stylized facts of the tanker freight rates examined, take into account the presence of asymmetric and long-memory effects. The results re-veal that the inclusion of aggregate oil demand and oil-specific (precautionary) demand shocks improves significantly the accuracy of the volatility forecasts drawn
Is there an ideal in-sample length for forecasting volatility?
There is limited research carried out to date in the academic literature addressing the issue of the ideal in-sample size when forecasting volatility. This paper therefore considers how much data is required in order to produce accurate forecasts. Broadly speaking, two views exist between practitioners/investors who typically prefer a small in-sample to minimise data holding requirements and researchers/academics who typically chose large in-sample periods. Using a process of expanding window regressions where the in-sample start period expands (backward recursion) we conduct forecasts over twenty-three international markets, including both developed and emerging. Our findings, which demonstrate a degree of homogeneity, show that for the majority of the markets large in-sample periods are not necessary in order to produce the most accurate forecasts supporting the practitioners’/investors’ view