31 research outputs found

    Roles of non-equilibrium conduction electrons on magnetization dynamics of ferromagnets

    Full text link
    The mutual dependence of spin-dependent conduction and magnetization dynamics of ferromagnets provides the key mechanisms in various spin-dependent phenomena. We compute the response of the conduction electron spins to a spatial and time varying magnetization M(r,t){\bf M} ({\bf r},t) within the time-dependent semiclassical transport theory. We show that the induced non-equilibrium conduction spin density in turn generates four spin torques acting on the magnetization--with each torque playing different roles in magnetization dynamics. By comparing with recent theoretical models, we find that one of these torques that has not been previously identified is crucial to consistently interpret experimental data on domain wall motion.Comment: References correcte

    Domain wall theory and exchange stiffness in Co/Pd multilayers

    Get PDF
    The stripe model of domain structure in multilayers is studied by micromagnetic simulation. The results indicate a strong reduction of the effective domain wall energy (by dipolar effects). Domain width measurements on sputtered Co/Pd multilayers are compared with the theory. The estimated exchange stiffness is comparable with that of bulk Co. The effects of interface roughness and of interlayer exchange are discussed

    Macrospin Models of Spin Transfer Dynamics

    Full text link
    The current-induced magnetization dynamics of a spin valve are studied using a macrospin (single domain) approximation and numerical solutions of a generalized Landau-Lifshitz-Gilbert equation. For the purpose of quantitative comparison with experiment [Kiselev {\it et al.} Nature {\bf 425}, 380 (2003)], we calculate the resistance and microwave power as a function of current and external field including the effects of anisotropies, damping, spin-transfer torque, thermal fluctuations, spin-pumping, and incomplete absorption of transverse spin current. While many features of experiment appear in the simulations, there are two significant discrepancies: the current dependence of the precession frequency and the presence/absence of a microwave quiet magnetic phase with a distinct magnetoresistance signature. Comparison is made with micromagnetic simulations designed to model the same experiment.Comment: 14 pages, 14 figures. Email [email protected] for a pdf with higher quality figure

    Magnetization reversal driven by spin-injection : a mesoscopic spin-transfer effect

    Full text link
    A mesoscopic description of spin-transfer effect is proposed, based on the spin-injection mechanism occurring at the junction with a ferromagnet. The effect of spin-injection is to modify locally, in the ferromagnetic configuration space, the density of magnetic moments. The corresponding gradient leads to a current-dependent diffusion process of the magnetization. In order to describe this effect, the dynamics of the magnetization of a ferromagnetic single domain is reconsidered in the framework of the thermokinetic theory of mesoscopic systems. Assuming an Onsager cross-coefficient that couples the currents, it is shown that spin-dependent electric transport leads to a correction of the Landau-Lifshitz-Gilbert equation of the ferromagnetic order parameter with supplementary diffusion terms. The consequence of spin-injection in terms of activation process of the ferromagnet is deduced, and the expressions of the effective energy barrier and of the critical current are derived. Magnetic fluctuations are calculated: the correction to the fluctuations is similar to that predicted for the activation. These predictions are consistent with the measurements of spin-transfer obtained in the activation regime and for ferromagnetic resonance under spin-injection.Comment: 20 pages, 2 figure

    Adiabatic Domain Wall Motion and Landau-Lifshitz Damping

    Get PDF
    Recent theory and measurements of the velocity of current-driven domain walls in magnetic nanowires have re-opened the unresolved question of whether Landau-Lifshitz damping or Gilbert damping provides the more natural description of dissipative magnetization dynamics. In this paper, we argue that (as in the past) experiment cannot distinguish the two, but that Landau-Lifshitz damping nevertheless provides the most physically sensible interpretation of the equation of motion. From this perspective, (i) adiabatic spin-transfer torque dominates the dynamics with small corrections from non-adiabatic effects; (ii) the damping always decreases the magnetic free energy, and (iii) microscopic calculations of damping become consistent with general statistical and thermodynamic considerations

    Influence of a Uniform Current on Collective Magnetization Dynamics in a Ferromagnetic Metal

    Get PDF
    We discuss the influence of a uniform current, j⃗\vec{j} , on the magnetization dynamics of a ferromagnetic metal. We find that the magnon energy ϵ(q⃗)\epsilon(\vec{q}) has a current-induced contribution proportional to q⃗⋅J⃗\vec{q}\cdot \vec{\cal J}, where J⃗\vec{\cal J} is the spin-current, and predict that collective dynamics will be more strongly damped at finite j⃗{\vec j}. We obtain similar results for models with and without local moment participation in the magnetic order. For transition metal ferromagnets, we estimate that the uniform magnetic state will be destabilized for j≳109Acm−2j \gtrsim 10^{9} {\rm A} {\rm cm}^{-2}. We discuss the relationship of this effect to the spin-torque effects that alter magnetization dynamics in inhomogeneous magnetic systems.Comment: 12 pages, 2 figure

    Direct-Current Induced Dynamics in Co90Fe10/Ni80Fe20 Point Contacts

    Full text link
    We have directly measured coherent high-frequency magnetization dynamics in ferromagnet films induced by a spin-polarized DC current. The precession frequency can be tuned over a range of several gigahertz, by varying the applied current. The frequencies of excitation also vary with applied field, resulting in a microwave oscillator that can be tuned from below 5 GHz to above 40 GHz. This novel method of inducing high-frequency dynamics yields oscillations having quality factors from 200 to 800. We compare our results with those from single-domain simulations of current-induced dynamics

    Spin-transfer in an open ferromagnetic layer: from negative damping to effective temperature

    Full text link
    Spin-transfer is a typical spintronics effect that allows a ferromagnetic layer to be switched by spin-injection. Most of the experimental results about spin transfer are described on the basis of the Landau-Lifshitz-Gilbert equation of the magnetization, in which additional current-dependent damping factors are added, and can be positive or negative. The origin of the damping can be investigated further by performing stochastic experiments, like one shot relaxation experiments under spin-injection in the activation regime of the magnetization. In this regime, the N\'eel-Brown activation law is observed which leads to the introduction of a current-dependent effective temperature. In order to justify the introduction of these counterintuitive parameters (effective temperature and negative damping), a detailed thermokinetic analysis of the different sub-systems involved is performed. We propose a thermokinetic description of the different forms of energy exchanged between the electric and the ferromagnetic sub-systems at a Normal/Ferromagnetic junction. The corresponding Fokker Planck equations, including relaxations, are derived. The damping coefficients are studied in terms of Onsager-Casimir transport coefficients, with the help of the reciprocity relations. The effective temperature is deduced in the activation regime.Comment: 65 pages, 10 figure
    corecore