1,378 research outputs found

    STS Observations of Landau Levels at Graphite Surfaces

    Full text link
    Scanning tunneling spectroscopy measurements were made on surfaces of two different kinds of graphite samples, Kish graphite and highly oriented pyrolytic graphite (HOPG), at very low temperatures and in high magnetic fields. We observed a series of peaks in the tunnel spectra, which grow with increasing field, both at positive and negative bias voltages. These are associated with Landau quantization of the quasi two-dimensional electrons and holes in graphite in magnetic fields perpendicular to the basal plane. Almost field independent Landau levels fixed near the Fermi energy, which are characteristic of the graphite crystalline structure, were directly observed for the first time. Calculations of the local density of states at the graphite surfaces allow us to identify Kish graphite as bulk graphite and HOPG as graphite with finite thickness effectively

    Brownian molecular motors driven by rotation-translation coupling

    Full text link
    We investigated three models of Brownian motors which convert rotational diffusion into directed translational motion by switching on and off a potential. In the first model a spatially asymmetric potential generates directed translational motion by rectifying rotational diffusion. It behaves much like a conventional flashing ratchet. The second model utilizes both rotational diffusion and drift to generate translational motion without spatial asymmetry in the potential. This second model can be driven by a combination of a Brownian motor mechanism (diffusion driven) or by powerstroke (drift driven) depending on the chosen parameters. In the third model, elements of both the Brownian motor and powerstroke mechanisms are combined by switching between three distinct states. Relevance of the model to biological motor proteins is discussed.Comment: 11 pages, 8 figure

    Construction of a Versatile Ultra-Low Temperature Scanning Tunneling Microscope

    Full text link
    We constructed a dilution-refrigerator (DR) based ultra-low temperature scanning tunneling microscope (ULT-STM) which works at temperatures down to 30 mK, in magnetic fields up to 6 T and in ultrahigh vacuum (UHV). Besides these extreme operation conditions, this STM has several unique features not available in other DR based ULT-STMs. One can load STM tips as well as samples with clean surfaces prepared in a UHV environment to an STM head keeping low temperature and UHV conditions. After then, the system can be cooled back to near the base temperature within 3 hours. Due to these capabilities, it has a variety of applications not only for cleavable materials but also for almost all conducting materials. The present ULT-STM has also an exceptionally high stability in the presence of magnetic field and even during field sweep. We describe details of its design, performance and applications for low temperature physics.Comment: 6 pages, 9 figures. accepted for publication in Rev. Sci. Instru

    Real-Space Imaging of Alternate Localization and Extension of Quasi Two-Dimensional Electronic States at Graphite Surfaces in Magnetic Fields

    Full text link
    We measured the local density of states (LDOS) of a quasi two-dimensional (2D) electron system near point defects on a surface of highly oriented pyrolytic graphite (HOPG) with scanning tunneling microscopy and spectroscopy. Differential tunnel conductance images taken at very low temperatures and in high magnetic fields show a clear contrast between localized and extended spatial distributions of the LDOS at the valley and peak energies of the Landau level spectrum, respectively. The localized electronic state has a single circular distribution around the defects with a radius comparable to the magnetic length. The localized LDOS is in good agreement with a spatial distribution of a calculated wave function for a single electron in 2D in a Coulomb potential in magnetic fields.Comment: 4 pages, 4 figure

    Scanning tunneling microscopy and spectroscopy of the electronic local density of states of graphite surfaces near monoatomic step edges

    Full text link
    We measured the electronic local density of states (LDOS) of graphite surfaces near monoatomic step edges, which consist of either the zigzag or armchair edge, with the scanning tunneling microscopy (STM) and spectroscopy (STS) techniques. The STM data reveal that the (3×3)R30∘(\sqrt{3} \times \sqrt{3}) R 30^{\circ} and honeycomb superstructures coexist over a length scale of 3-4 nm from both the edges. By comparing with density-functional derived nonorthogonal tight-binding calculations, we show that the coexistence is due to a slight admixing of the two types of edges at the graphite surfaces. In the STS measurements, a clear peak in the LDOS at negative bias voltages from -100 to -20 mV was observed near the zigzag edges, while such a peak was not observed near the armchair edges. We concluded that this peak corresponds to the graphite "edge state" theoretically predicted by Fujita \textit{et al.} [J. Phys. Soc. Jpn. {\bf 65}, 1920 (1996)] with a tight-binding model for graphene ribbons. The existence of the edge state only at the zigzag type edge was also confirmed by our first-principles calculations with different edge terminations.Comment: 20 pages, 11 figure

    A DNA Damage-Induced, SOS-Independent Checkpoint Regulates Cell Division in Caulobacter crescentus

    Get PDF
    Cells must coordinate DNA replication with cell division, especially during episodes of DNA damage. The paradigm for cell division control following DNA damage in bacteria involves the SOS response where cleavage of the transcriptional repressor LexA induces a division inhibitor. However, in Caulobacter crescentus, cells lacking the primary SOS-regulated inhibitor, sidA, can often still delay division post-damage. Here we identify didA, a second cell division inhibitor that is induced by DNA damage, but in an SOS-independent manner. Together, DidA and SidA inhibit division, such that cells lacking both inhibitors divide prematurely following DNA damage, with lethal consequences. We show that DidA does not disrupt assembly of the division machinery and instead binds the essential division protein FtsN to block cytokinesis. Intriguingly, mutations in FtsW and FtsI, which drive the synthesis of septal cell wall material, can suppress the activity of both SidA and DidA, likely by causing the FtsW/I/N complex to hyperactively initiate cell division. Finally, we identify a transcription factor, DriD, that drives the SOS-independent transcription of didA following DNA damage.National Institutes of Health (U.S.) (Grant R01GM082899)National Science Foundation (U.S.). Graduate Research Fellowship Progra

    Keldysh study of point-contact tunneling between superconductors

    Full text link
    We revisit the problem of point-contact tunnel junctions involving one-dimensional superconductors and present a simple scheme for computing the full current-voltage characteristics within the framework of the non-equilibrium Keldysh Green function formalism. We address the effects of different pairing symmetries combined with magnetic fields and finite temperatures at arbitrary bias voltages. We discuss extensively the importance of these results for present-day experiments. In particular, we propose ways of measuring the effects found when the two sides of the junction have dissimilar superconducting gaps and when the symmetry of the superconducting states is not the one of spin-singlet pairing. This last point is of relevance for the study of the superconducting state of certain organic materials like the Bechgaard salts and, to some extent, for ruthenium compounds.Comment: 10 pages, 4 figure

    Scanning tunneling microscopy and spectroscopy studies of graphite edges

    Full text link
    We studied experimentally and theoretically the electronic local density of states (LDOS) near single step edges at the surface of exfoliated graphite. In scanning tunneling microscopy measurements, we observed the (3×3)R30∘(\sqrt{3} \times \sqrt{3}) R 30^{\circ} and honeycomb superstructures extending over 3−-4 nm both from the zigzag and armchair edges. Calculations based on a density-functional derived non-orthogonal tight-binding model show that these superstructures can coexist if the two types of edges admix each other in real graphite step edges. Scanning tunneling spectroscopy measurements near the zigzag edge reveal a clear peak in the LDOS at an energy below the Fermi energy by 20 meV. No such a peak was observed near the armchair edge. We concluded that this peak corresponds to the "edge state" theoretically predicted for graphene ribbons, since a similar prominent LDOS peak due to the edge state is obtained by the first principles calculations.Comment: 4 pages, 6 figures, APF9, Appl. Surf. Sci. \bf{241}, 43 (2005
    • …
    corecore