12 research outputs found

    Oma1, a novel membrane-bound metallopeptidase in mitochondria with activities overlapping with the m-AAA protease

    No full text
    The integrity of the inner membrane of mitochondria is maintained by a membrane-embedded quality control system that ensures the removal of misfolded membrane proteins. Two ATP-dependent AAA proteases with catalytic sites at opposite membrane surfaces are key components of this proteolytic system. Here we describe the identification of a novel conserved metallopeptidase that exerts activities overlapping with the m-AAA protease and was therefore termed Oma1. Both peptidases are integral parts of the inner membrane and mediate the proteolytic breakdown of a misfolded derivative of the polytopic inner membrane protein Oxa1. The m-AAA protease cleaves off the matrix-exposed C-terminal domain of Oxa1 and processively degrades its transmembrane domain. In the absence of the m-AAA protease, proteolysis of Oxa1 is mediated in an ATP-independent manner by Oma1 and a yet unknown peptidase resulting in the accumulation of N- and C-terminal proteolytic fragments. Oma1 exposes its proteolytic center to the matrix side; however, mapping of Oma1 cleavage sites reveals clipping of Oxa1 in loop regions at both membrane surfaces. These results identify Oma1 as a novel component of the quality control system in the inner membrane of mitochondria. Proteins homologous to Oma1 are present in higher eukaryotic cells, eubacteria and archaebacteria, suggesting that Oma1 is the founding member of a conserved family of membrane-embedded metallopeptidases

    Role of the novel metallopeptidase Mop112 and saccharolysin for the complete degradation of proteins residing in different subcompartments of mitochondria

    No full text
    Mitochondria harbor a conserved proteolytic system that mediates the complete degradation of organellar proteins. ATP-dependent proteases, like a Lon protease in the matrix space and m- and i-AAA proteases in the inner membrane, degrade malfolded proteins within mitochondria and thereby protect the cell against mitochondrial damage. Proteolytic breakdown products include peptides and free amino acids, which are constantly released from mitochondria. It remained unclear, however, whether the turnover of malfolded proteins involves only ATP-dependent proteases or also oligopeptidases within mitochondria. Here we describe the identification of Mop112, a novel metallopeptidase of the pitrilysin family M16 localized in the intermembrane space of yeast mitochondria. This peptidase exerts important functions for the maintenance of the respiratory competence of the cells that overlap with the i-AAA protease. Deletion of MOP112 did not affect the stability of misfolded proteins in mitochondria, but resulted in an increased release from the organelle of peptides, generated upon proteolysis of mitochondrial proteins. We find that the previously described metallopeptidase saccharolysin (or Prd1) exerts a similar function in the intermembrane space. The identification of peptides released from peptidase-deficient mitochondria by mass spectrometry indicates a dual function of Mop112 and saccharolysin: they degrade peptides generated upon proteolysis of proteins both in the intermembrane and matrix space and presequence peptides cleaved off by specific processing peptidases in both compartments. These results suggest that the turnover of mitochondrial proteins is mediated by the sequential action of ATP-dependent proteases and oligopeptidases, some of them localized in the intermembrane space

    Prohibitins Interact Genetically with Atp23, a Novel Processing Peptidase and Chaperone for the F(1)F(O)-ATP Synthase

    No full text
    The generation of cellular energy depends on the coordinated assembly of nuclear and mitochondrial-encoded proteins into multisubunit respiratory chain complexes in the inner membrane of mitochondria. Here, we describe the identification of a conserved metallopeptidase present in the intermembrane space, termed Atp23, which exerts dual activities during the biogenesis of the F(1)F(O)-ATP synthase. On one hand, Atp23 serves as a processing peptidase and mediates the maturation of the mitochondrial-encoded F(O)-subunit Atp6 after its insertion into the inner membrane. On the other hand and independent of its proteolytic activity, Atp23 promotes the association of mature Atp6 with Atp9 oligomers. This assembly step is thus under the control of two substrate-specific chaperones, Atp10 and Atp23, which act on opposite sides of the inner membrane. Strikingly, both ATP10 and ATP23 were found to genetically interact with prohibitins, which build up large, ring-like assemblies with a proposed scaffolding function in the inner membrane. Our results therefore characterize not only a novel processing peptidase with chaperone activity in the mitochondrial intermembrane space but also link the function of prohibitins to the F(1)F(O)-ATP synthase complex

    Mitochondrial protein turnover: role of the precursor intermediate peptidase Oct1 in protein stabilization

    No full text
    An increasing number of mitochondrial preproteins are sequentially processed upon import by the presequence mitochondrial processing peptidase (MPP) and the intermediate peptidase octapeptidyl aminopeptidase 1 (Oct1). We show that Oct1 removes destabilizing residues from import intermediates generated by MPP. Oct1 therefore acts as a quality control system, preventing premature substrate degradation
    corecore