35 research outputs found

    Electron Densities in the Lower Thermosphere From GUVI 135.6 nm Tomographic Inversions in Support of SpreadFEx

    Get PDF
    The SpreadFEx campaign was conducted with the goal of investigating potential neutral atmospheric dynamics influences in seeding plasma instabilities and bubbles extending to higher altitudes from September to November 2005, with primary measurements in Brazil. In this paper, we present the results of space-based UV and ground-based optical observations in support of this campaign. Specifically, we present multi-dimensional electron density images obtained tomographically from the 135.6 nm emissions measured by the GUVI instrument aboard the TIMED satellite that result from radiative recombination of O+ and compare those with the corresponding 630.0 nm OI images recorded in the Brazilian sector. The GUVI results provide altitude vs. longitude information on depleted regions in the ionospheric plasma density that are complementary to the single-height latitude-longitude images obtained with the airglow imager

    Observational Investigations of Gravity Wave Momentum Flux with Spectroscopic Imaging

    Get PDF
    We apply a newly developed gravity wave momentum flux estimation method to the mesospheric measurements obtained with colocated airglow imager and meteor radar at Maui, Hawaii (20.7ºN, 156.3ºW), during the Maui Mesosphere and Lower Thermosphere (Maui MALT) campaign. The method identifies individual quasi-monochromatic gravity waves with periods between 6 and ~40 min, estimates the intrinsic wave parameters, and calculates the momentum fluxes carried by vertically propagating waves. Data taken on 28 October 2003 are analyzed in detail to reveal the relationship between momentum flux and wave parameters. The January, April, July, and October 2003 data are divided into summer and winter categories, and nightly average momentum fluxes are calculated for comparison of the seasonal wave propagation directions. Average wave momentum flux is directed to the northeast during most of the summer nights, while a southwest preference exists for the winter nights. The results extracted from Maui, Hawaii, combined with the earlier results from Starfire Optical Range, New Mexico (35ºN, 107ºW), and other observations, support the notion that the seasonal trend in meridional flux is a global phenomenon

    Overview and Summary of the Spread F Experiment (SpreadFex)

    Get PDF
    We provide here an overview of, and a summary of results arising from, an extensive experimental campaign (the Spread F Experiment, or SpreadFEx) performed from September to November 2005, with primary measurements in Brazil. The motivation was to define the potential role of neutral atmosphere dynamics, specifically gravity wave motions propagating upward from the lower atmosphere, in seeding Rayleigh-Taylor instability (RTI) and plasma bubbles extending to higher altitudes. Campaign measurements focused on the Brazilian sector and included ground-based optical, radar, digisonde, and GPS measurements at a number of fixed and temporary sites. Related data on convection and plasma bubble structures were also collected by GOES 12, and the GUVI instrument aboard the TIMED satellite

    The spread-F Experiment (SpreadFEx): Program overview and first results

    Get PDF
    We performed an extensive experimental campaign (the spread F Experiment, or SpreadFEx) from September to November 2005 to attempt to define the role of neutral atmosphere dynamics, specifically wave motions propagating upward from the lower atmosphere, in seeding equatorial spread F and plasma bubbles extending to higher altitudes. Campaign measurements focused on the Brazilian sector and included ground-based optical, radar, digisonde, and GPS measurements at a number of fixed and temporary sites. Related data on convection and plasma bubble structures were also collected by GOES 12 and the GUVI instrument aboard the TIMED satellite. Initial results of our analyses of SpreadFEx and related data indicate 1) extensive gravity wave (GW) activity apparently linked to deep convection predominantly to the west of our measurement sites, 2) the presence of small-scale GWactivity confined to lower altitudes, 3) larger-scaleGWactivity apparently penetrating to much higher altitudes suggested by electron density and TEC fluctuations in the E and F regions, 4) substantial GW amplitudes implied by digisonde electron densities, and 5) apparent direct links of these perturbations in the lower F region to spread F and plasma bubbles extending to much higher altitudes. Related efforts with correlative data are defining 6) the occurrence and locations of deep convection, 7) the spatial and temporal evolutions of plasma bubbles, the 8) 2D (height-resolved) structures of plasma bubbles, and 9) the expected propagation of GWs and tides from the lower atmosphere into the thermosphere and ionosphere
    corecore