8 research outputs found

    Tension-Stiffening Effect Consideration for Modeling Deflection of Cracked Reinforced UHPC Beams

    No full text
    Tension-stiffening effects can significantly influence the flexural performance of cracked reinforced concrete specimens. Such effect is amplified for fiber-reinforced concrete, given the fact that fibers can bridge the cracks. The objective of this study was to develop a model to predict the deflection of cracked reinforced ultra-high performance concrete (R-UHPC) beam elements. The modeling approach characterized the average bending moment of inertia by combining the existing model used for conventional reinforced concrete and the analytical model of stress distribution of UHPC along the cross-section. The finite element analysis (FEA) was employed to evaluate the flexural deflection based on the average bending moment of inertia. The calculated load-deflection relationships have been compared to experimental results. The results indicated that the relative errors of deflection between predicted and experimental results can be controlled within 15%, compared to values ranging from 5% to 50% calculated by neglecting the tensile properties of cracked UHPC and values ranging from 5% to 30% calculated by effective inertia of bending moment of ACI code. Therefore, the developed model can be used in practice because it can secure the accuracy of deflection prediction of the R-UHPC beams. Such a simplified model also has higher sustainability compared to FEA using solid elements since it is easier and time-saving to be established and calculated

    Tension-Stiffening Effect Consideration for Modeling Deflection of Cracked Reinforced UHPC Beams

    No full text
    Tension-stiffening effects can significantly influence the flexural performance of cracked reinforced concrete specimens. Such effect is amplified for fiber-reinforced concrete, given the fact that fibers can bridge the cracks. The objective of this study was to develop a model to predict the deflection of cracked reinforced ultra-high performance concrete (R-UHPC) beam elements. The modeling approach characterized the average bending moment of inertia by combining the existing model used for conventional reinforced concrete and the analytical model of stress distribution of UHPC along the cross-section. The finite element analysis (FEA) was employed to evaluate the flexural deflection based on the average bending moment of inertia. The calculated load-deflection relationships have been compared to experimental results. The results indicated that the relative errors of deflection between predicted and experimental results can be controlled within 15%, compared to values ranging from 5% to 50% calculated by neglecting the tensile properties of cracked UHPC and values ranging from 5% to 30% calculated by effective inertia of bending moment of ACI code. Therefore, the developed model can be used in practice because it can secure the accuracy of deflection prediction of the R-UHPC beams. Such a simplified model also has higher sustainability compared to FEA using solid elements since it is easier and time-saving to be established and calculated

    Performance-Based Specifications of Workability Characteristics of Prestressed, Precast Self-Consolidating Concrete—A North American Prospective

    No full text
    Adequate selection of material constituents and test methods are necessary for workability specifications and performance of hardened concrete. An experimental program was performed to evaluate the suitability of various test methods for workability assessment and to propose performance specifications of prestressed concrete. In total, 33 self-consolidating concrete (SCC) mixtures made with various mixture proportioning parameters, including maximum size and type of aggregate, type and content of binder, and w/cm were evaluated. Correlations among various test results used in evaluating the workability responses are established. It is recommended that SCC should have slump flow values of 635–760 mm. To ensure proper filling capacity greater than 80%, such concrete should have a passing ability that corresponds to L-box blocking ratio (h2/h1) ≥ 0.5, J-Ring flow of 570–685 mm, slump flow minus J-Ring flow diameter ≤75 mm. Moreover, Stable SCC should develop a column segregation index lower than 5%, and rate of settlement at 30 min of 0.27%/h for SCC proportioned with 12.5 or 9.5 mm MSA. It is recommended that SCC should have a plastic viscosity of 100–225 Pa·s and 100–400 Pa·s for concrete made with crushed aggregate and gravel, respectively, to ensure proper workability

    Multiphasic effects of blood pressure on survival in hemodialysis patients

    No full text
    corecore