21 research outputs found

    Kif14 overexpression accelerates murine retinoblastoma development

    Get PDF
    The mitotic kinesin KIF14 has an essential role in the recruitment of proteins required for the final stages of cytokinesis. Genomic gain and/or overexpression of KIF14 has been documented in retinoblastoma and a number of other cancers, such as breast, lung and ovarian carcinomas, strongly suggesting its role as an oncogene. Despite evidence of oncogenic properties in vitro and in xenografts, Kif14's role in tumor progression has not previously been studied in a transgenic cancer model. Using a novel Kif14 overexpressing, simian virus 40 large T-antigen retinoblastoma (TAg-RB) double transgenic mouse model, we aimed to determine Kif14's role in promoting retinal tumor formation. Tumor initiation and development in double transgenics and control TAg-RB littermates were documented in vivo over a time course by optical coherence tomography, with subsequent ex vivo quantification of tumor burden. Kif14 overexpression led to an accelerated initiation of tumor formation in the TAg-RB model and a significantly decreased tumor doubling time (1.8 vs. 2.9 weeks). Moreover, overall percentage tumor burden was also increased by Kif14 overexpression. These data provide the first evidence that Kif14 can promote tumor formation in susceptible cells in vivo

    Heme Synthesis Inhibition Blocks Angiogenesis via Mitochondrial Dysfunction

    Get PDF
    The relationship between heme metabolism and angiogenesis is poorly understood. The final synthesis of heme occurs in mitochondria, where ferrochelatase (FECH) inserts Fe2+ into protoporphyrin IX to produce proto-heme IX. We previously showed that FECH inhibition is antiangiogenic in human retinal microvascular endothelial cells (HRECs) and in animal models of ocular neovascularization. In the present study, we sought to understand the mechanism of how FECH and thus heme is involved in endothelial cell function. Mitochondria in endothelial cells had several defects in function after heme inhibition. FECH loss changed the shape and mass of mitochondria and led to significant oxidative stress. Oxidative phosphorylation and mitochondrial Complex IV were decreased in HRECs and in murine retina ex vivo after heme depletion. Supplementation with heme partially rescued phenotypes of FECH blockade. These findings provide an unexpected link between mitochondrial heme metabolism and angiogenesis

    Design, synthesis and biological evaluation of photoaffinity probes of antiangiogenic homoisoflavonoids

    Get PDF
    A naturally occurring homoisoflavonoid, cremastranone (1) inhibited angiogenesis in vitro and in vivo. We developed an analogue SH-11037 (2) which is more potent than cremastranone in human retinal microvascular endothelial cells (HRECs) and blocks neovascularization in animal models. Despite their efficacy, the mechanism of these compounds is not yet fully known. In the course of building on a strong foundation of SAR and creating a novel chemical tool for target identification of homoisoflavonoid-binding proteins, various types of photoaffinity probes were designed and synthesized in which benzophenone and biotin were attached to homoisoflavanonoids using PEG linkers on either the C-3′ or C-7 position. Notably, the photoaffinity probes linking on the phenol group of the C-3′ position retain excellent activity of inhibiting retinal endothelial cell proliferation with up to 72 nM of GI50

    Antiangiogenic activity and cytotoxicity of triterpenoids and homoisoflavonoids from 'Massonia pustulata' and 'Massonia bifolia'

    Get PDF
    The Hyacinthaceae family (sensu APGII) with approximately 900 species in around 70 genera, plays a significant role in traditional medicine in Africa as well as across Europe and the Middle and Far East. The dichloromethane extract of the bulbs of Massonia pustulata (Hyacinthaceae sensu APGII) yielded two known homoisoflavonoids, (R)-5-hydroxy-3-(4-hydroxybenzyl)-7-methoxy-4-chromanone 1 and 5-hydroxy-3-(4-hydroxybenzyl)-7-methoxy-4-chromone 2 and four spirocyclic nortriterpenoids, eucosterol 3, 28-hydroxyeucosterol 4 and two previously unreported triterpenoid derivatives, (17S,23S)-17α,23-epoxy-3β,22β,29-trihydroxylanost-8-en-27,23-olide 5 and (17S, 23S)-17α,23-epoxy-28,29-dihydroxylanost-8-en-3-on-27,23-olide 6. Compounds 1, 2, 3, and 5 were assessed for cytotoxicity against CaCo-2 cells using a neutral red uptake assay. Compounds 1, 2 and 5 reduced cell viability by 70% at concentrations of 30, 100 and 100 μM respectively. Massonia bifolia yielded three known homoisoflavonoids, (R)-(4’-hydroxy)-5-hydroxy-7-methoxy-4-chromanone 1, (R)-(4’-hydroxy)-5,7-dihydroxy-4-chromanone 7 and (R)-(3’-hydroxy-4’-methoxy)-5,7-dihydroxy-4-chromanone 9, two previously unreported homoisoflavonoids, (E)-3-benzylidene-(3’,4’-dihydroxy)-5-hydroxy-7-methoxy-4-chromanone 8 and (R)-(3’,4’-dihydroxy)-5-hydroxy-7-methoxy-4-chromanone 10, and a spirocyclic nortriterpenoid, 15-deoxoeucosterol 11. Compounds 1, 1Ac, 7, 8, 9 and 10 were screened for antiangiogenic activity against human retinal microvascular endothelial cells. Some compounds showed dose-dependent antiproliferative activity and blocked endothelial tube formation, suggestive of antiangiogenic activity

    Ref-1/APE1 Inhibition with Novel Small Molecules Blocks Ocular Neovascularization

    Get PDF
    Ocular neovascular diseases like wet age-related macular degeneration are a major cause of blindness. Novel therapies are greatly needed for these diseases. One appealing antiangiogenic target is reduction-oxidation factor 1–apurinic/apyrimidinic endonuclease 1 (Ref-1/APE1). This protein can act as a redox-sensitive transcriptional activator for nuclear factor (NF)-κB and other proangiogenic transcription factors. An existing inhibitor of Ref-1’s function, APX3330, previously showed antiangiogenic effects. Here, we developed improved APX3330 derivatives and assessed their antiangiogenic activity. We synthesized APX2009 and APX2014 and demonstrated enhanced inhibition of Ref-1 function in a DNA-binding assay compared with APX3330. Both compounds were antiproliferative against human retinal microvascular endothelial cells (HRECs; GI50 APX2009: 1.1 μM, APX2014: 110 nM) and macaque choroidal endothelial cells (Rf/6a; GI50 APX2009: 26 μM, APX2014: 5.0 μM). Both compounds significantly reduced the ability of HRECs and Rf/6a cells to form tubes at mid-nanomolar concentrations compared with control, and both significantly inhibited HREC and Rf/6a cell migration in a scratch wound assay, reducing NF-κB activation and downstream targets. Ex vivo, APX2009 and APX2014 inhibited choroidal sprouting at low micromolar and high nanomolar concentrations, respectively. In the laser-induced choroidal neovascularization mouse model, intraperitoneal APX2009 treatment significantly decreased lesion volume by 4-fold compared with vehicle (P < 0.0001, ANOVA with Dunnett’s post-hoc tests), without obvious intraocular or systemic toxicity. Thus, Ref-1 inhibition with APX2009 and APX2014 blocks ocular angiogenesis in vitro and ex vivo, and APX2009 is an effective systemic therapy for choroidal neovascularization in vivo, establishing Ref-1 inhibition as a promising therapeutic approach for ocular neovascularization

    Retinal Phenotyping of Ferrochelatase Mutant Mice Reveals Protoporphyrin Accumulation and Reduced Neovascular Response

    Get PDF
    Purpose: Heme depletion, through inhibition of ferrochelatase (FECH), blocks retinal and choroidal neovascularization. Both pharmacologic FECH inhibition and a partial loss-of-function Fech mutation (Fechm1Pas) are associated with decreased neovascularization. However, the ocular physiology of Fechm1Pas mice under basal conditions has not been characterized. Here, we aimed to characterize the retinal phenotype of Fechm1Pas mice. Methods: We monitored retinal vasculature at postnatal day 17, 2 months, and 6 months in Fechm1Pas homozygotes, heterozygotes, and their wild-type littermates. We characterized Fech substrate protoporphyrin (PPIX) fluorescence in the eye (excitation = 403 nm, emission = 628 nm), retinal function by electroretinogram, visual acuity by optomotor reflex, and retinal morphology by optical coherence tomography and histology. We stained vasculature using isolectin B4 and fluorescein angiography. We determined endothelial sprouting of retinal and choroidal tissue ex vivo and bioenergetics of retinal punches using a Seahorse flux analyzer. Results: Fundi, retinal vasculature, venous width, and arterial tortuosity showed no aberrations. However, VEGF-induced retinal and choroidal sprouting was decreased in Fechm1Pas mutants. Homozygous Fechm1Pas mice had pronounced buildup of PPIX in the posterior eye with no damage to visual function, bioenergetics, and integrity of retinal layers. Conclusions: Even with a buildup of PPIX in the retinal vessels in Fechm1Pas homozygotes, the vasculature remains normal. Notably, stimulus-induced ex vivo angiogenesis was decreased in Fechm1Pas mutants, consistent with reduced pathologic angiogenesis seen previously in neovascular animal models. Our findings indicate that Fechm1Pas mice are a useful model for studying the effects of heme deficiency on neovascularization due to Fech blockade

    Enantioselective Synthesis of Homoisoflavanones by Asymmetric Transfer Hydrogenation and Their Biological Evaluation for Antiangiogenic Activity

    Get PDF
    Neovascular eye diseases are a major cause of blindness. Excessive angiogenesis is a feature of several conditions, including wet age-related macular degeneration, proliferative diabetic retinopathy, and retinopathy of prematurity. Development of novel anti-angiogenic small molecules for the treatment of neovascular eye disease is essential to provide new therapeutic leads for these diseases. We have previously reported the therapeutic potential of anti-angiogenic homoisoflavanone derivatives with efficacy in retinal and choroidal neovascularization models, although these are racemic compounds due to the C3-stereogenic center in the molecules. This work presents asymmetric synthesis and structural determination of anti-angiogenic homoisoflavanones and pharmacological characterization of the stereoisomers. We describe an enantioselective synthesis of homoisoflavanones by virtue of ruthenium-catalyzed asymmetric transfer hydrogenation accompanying dynamic kinetic resolution, providing a basis for the further development of these compounds into novel experimental therapeutics for neovascular eye diseases

    Bufadienolides and anti-angiogenic homoisoflavonoids from 'Rhodocodon cryptopodus', 'Rhodocodon rotundus' and 'Rhodocodon cyathiformis'

    Get PDF
    Background: Homoisoflavonoids have been shown to have potent anti-proliferative activities in endothelial cells over other cell types and have demonstrated a strong antiangiogenic potential in vitro and in vivo in animal models of ocular neovascularization. Three species of Rhodocodon (Scilloideaea subfamily of the Asparagaceae family), endemic to Madagascar, R. cryptopodus, R. rotundus and R. cyathiformis, were investigated. Purpose: To isolate and test homoisoflavonoids for their antiangiogenic activity against human retinal microvascular endothelial cells (HRECs), as well as specificity against other ocular cell lines. Methods: Plant material was extracted at room temperature with EtOH. Compounds were isolated using flash column chromatography and were identified using NMR and CD spectroscopy and HRESIMS. Compounds were tested for antiproliferative effects on primary human microvascular retinal endothelial cells (HRECs), ARPE19 retinal pigment epithelial cells, 92–1 uveal melanoma cells, and Y79 retinoblastoma cells. HRECs exposed to compounds were also tested for migration and tube formation ability. Results: Two homoisoflavonoids, 3S-5,7-dihydroxy-(3′-hydroxy-4′-methoxybenzyl)-4-chromanone (1) and 3S-5,7-dihydroxy-(4′-hydroxy-3′-methoxybenzyl)-4-chromanone (2), were isolated along with four bufadienolides. Compound 1 was found to be non-specifically antiproliferative, with GI50 values ranging from 0.21–0.85 μM across the four cell types, while compound 2 showed at least 100-fold specificity for HRECs over the other tested cell lines. Compound 1, with a 3S configuration, was 700 times more potent that the corresponding 3R enantiomer recently isolated from a Massonia species. Conclusion: Select homoisoflavonoids have promise as antiangiogenic agents that are not generally cytotoxic

    The antiangiogenic activity of naturally occurring and synthetic homoisoflavonoids from the Hyacinthaceae (sensu APGII)

    Get PDF
    Excessive blood vessel formation in the eye is implicated in wet age-related macular degeneration, proliferative diabetic retinopathy, neovascular glaucoma, and retinopathy of prematurity, which are major causes of blindness. Small molecule antiangiogenic drugs are strongly needed to supplement existing biologics. Homoisoflavonoids have been previously shown to have potent antiproliferative activities in endothelial cells over other cell types. Moreover, they demonstrated a strong antiangiogenic potential in vitro and in vivo in animal models of ocular neovascularization. Here, we tested the antiangiogenic activity of a group of naturally occurring homoisoflavonoids isolated from the family Hyacinthaceae and related synthetic compounds, chosen for synthesis based on structure–activity relationship observations. Several compounds showed interesting antiproliferative and antiangiogenic activities in vitro on retinal microvascular endothelial cells, a disease-relevant cell type, with the synthetic chromane, 46, showing the best activity (GI50 of 2.3 × 10–4 μM)

    Ferrochelatase is a therapeutic target for ocular neovascularization

    Get PDF
    Ocular neovascularization underlies major blinding eye diseases such as “wet” age-related macular degeneration (AMD). Despite the successes of treatments targeting the vascular endothelial growth factor (VEGF) pathway, resistant and refractory patient populations necessitate discovery of new therapeutic targets. Using a forward chemical genetic approach, we identified the heme synthesis enzyme ferrochelatase (FECH) as necessary for angiogenesis in vitro and in vivo. FECH is overexpressed in wet AMD eyes and murine choroidal neovascularization; siRNA knockdown of Fech or partial loss of enzymatic function in the Fechm1Pas mouse model reduces choroidal neovascularization. FECH depletion modulates endothelial nitric oxide synthase function and VEGF receptor 2 levels. FECH is inhibited by the oral antifungal drug griseofulvin, and this compound ameliorates choroidal neovascularization in mice when delivered intravitreally or orally. Thus, FECH inhibition could be used therapeutically to block ocular neovascularization
    corecore