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Abstract

Neovascular eye diseases are a major cause of blindness. Excessive angiogenesis is a feature of 

several conditions, including wet age-related macular degeneration, proliferative diabetic 

retinopathy, and retinopathy of prematurity. Development of novel anti-angiogenic small 

molecules for the treatment of neovascular eye disease is essential to provide new therapeutic 

leads for these diseases. We have previously reported the therapeutic potential of anti-angiogenic 

homoisoflavanone derivatives with efficacy in retinal and choroidal neovascularization models, 

although these are racemic compounds due to the C3-stereogenic center in the molecules. This 

work presents asymmetric synthesis and structural determination of anti-angiogenic 

homoisoflavanones and pharmacological characterization of the stereoisomers. We describe an 
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enantioselective synthesis of homoisoflavanones by virtue of ruthenium-catalyzed asymmetric 

transfer hydrogenation accompanying dynamic kinetic resolution, providing a basis for the further 

development of these compounds into novel experimental therapeutics for neovascular eye 

diseases.
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INTRODUCTION

Angiogenesis, a physiological process in which new blood vessels are formed, is involved in 

the progression of several diseases such as cancer and neovascular eye disease.1 These latter 

diseases, including neovascular (“wet”) age-related macular degeneration (AMD), 

proliferative diabetic retinopathy (PDR), and retinopathy of prematurity (ROP), are 

characterized by abnormal angiogenesis in the posterior segment of the eye (retina and 

choroid), leading to vascular ischemia and leakage that can result in hemorrhage, edema, and 

retinal detachment. Retinal and choroidal neovascularization (CNV) are major causes of 

vision loss in eye disease and have an immense effect on quality of life.2 Anti-angiogenic 

therapies targeting the important, proangiogenic vascular endothelial growth factor (VEGF) 

pathway have been successful in stabilizing, or even improving central vision in many 

patients.3 The present anti-VEGF therapies such as ranibizumab, bevacizumab, pegaptanib, 

and aflibercept are used as standard treatments for neovascular AMD. Although these 

biologics are now used widely, they have limitations: most target the VEGF pathway only at 

the level of the VEGF ligand-receptor interaction, approximately 35% of patients with wet 

AMD are refractive to these biologics4 and they can also be associated with significant side 

effects.5 There are as yet no approved small molecules for treating retinal or choroidal 

neovascularization, although some promising small molecules are being developed.6 Thus, 

novel antiangiogenic small molecules still need to be developed to complement and perhaps 

combine with existing therapies for wet AMD, PDR and ROP.
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Homoisoflavanones consist of a 3-benzylchroman-4-one skeleton and are a small group of 

natural chromane heterocycles, purified from various plants. Some review articles deal with 

the plant sources and biological activities of the homoisoflavanones.7 These natural products 

show a wide range of biological activities such as anti-inflammatory, antioxidant, anti-

microbial, and anticancer activities. There is an antiangiogenic homoisoflavanone, 5,7-

dihydroxy-3-(3-hydroxy-4-methoxybenzyl)-6-methoxychroman-4-one, called cremastranone 

(1), that has been isolated from the plants Muscari armeniacum,8 Chionodoxa luciliae,9 

Scilla natalensis,10 Merwilla plumbea,11 and Cremastra appendiculata (D. Don).12 

Cremastranone was reported to inhibit neovascularization through anti-proliferative activity 

against human umbilical vein endothelial cells (HUVECs). It had a 50% growth inhibitory 

concentration (GI50) value of 1.5 μM without cytotoxic effect (Figure 1) and reduced retinal 

neovascularization in the laser-induced choroidal neovascularization (L-CNV) and oxygen 

induced retinopathy (OIR) mouse models.13 We successfully synthesized cremastranone (1) 

as a racemic mixture and evaluated its anti-proliferative activity against HUVECs and also 

the more tissue-relevant human retinal microvascular endothelial cells (HRECs) with GI50 

values of 0.38 and 0.22 μM, respectively, with slightly more potency than the naturally 

occurring cremastranone.14

So far, our synthetic efforts toward cremastranone (1) have positively impacted our 

phenotype-based drug discovery and target identification program. We sought structural 

modification to increase antiangiogenic activity.15 As synthetic analogs of cremastranone 

were designed and synthesized by A and B ring modification, 3-(3-hydroxy-4-

methoxybenzyl)-5,6,7-trimethoxychroman-4-one (2) and a phenylalanyl-incorporated analog 

(3) were identified that inhibit ocular neovascularization with selectivity for HRECs (GI50 of 

2.0 and 0.055 μM, respectively), over other cell types as well as promising efficacy in OIR 

and L-CNV in vivo models.15,16 We also used these compounds as starting points to identify 

target(s) by chemical proteomics.17,18 Our homoisoflavanone-based photoaffinity probes 

were exploited for binding protein and target validation for antiangiogenic mechanism, 

leading to target proteins for two different compounds, ferrochelatase (FECH) and soluble 

epoxide hydrolase (sEH).19,20

However, the stereochemistry at the C3 position in cremastranone has not been reported, 

although the (R)-form is known as the configuration of general naturally occurring 

homoisoflavanones.7 Moreover, the relationship between biological activity and absolute 

stereochemistry has not yet been confirmed with enantioenriched compounds obtained by 

chiral separation or asymmetric synthesis. In addition, 5,6,7-trimethoxyhomoisoflavanones 2 
and 3 were synthesized and evaluated as mixtures of two stereoisomers.17 In the case of the 

analog 3, the (S,S)- and (R,S)-isomers were named based on two stereogenic centers at C3 

and the α-carbon of the L-phenylalanyl residue (Figure 1). As each isomer potentially 

exhibited different pharmacological activity, it was necessary to develop an investigational 

drug for the treatment of wet AMD from the most potent stereoisomer.

There have been many efforts towards the synthesis of homoisoflavonoids including 

asymmetric synthesis.21 To obtain an enantiopure antipode of homoisoflavanone efficiently, 

the previous synthetic approaches developed by others were studied as follows (Figure 2): 1) 

Intramolecular Friedel-Crafts acylation of chiral 2-benzyl-3-aryloxypropanoic acid was 
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adapted for the formation of the 3-benzyl-4-chromanone. Such a chiral carboxylic acid was 

obtained by lipase-catalyzed reaction of 2-benzyl-1,3-propandiol, followed by Mitsunobu 

reaction of phenol (Kometani et al.22) and by iridium-catalyzed asymmetric hydrogenation 

of α-aryloxymethylcinnamic acid (Zhou et al.23), 2) the introduction of a p-methoxybenzyl 

group (for B ring) by asymmetric aldol reaction with Evans chiral oxazolidinone, followed 

by the intramolecular etherification to provide chiral 3-benzyl-chromane, which was 

transformed into the 3-benzyl-4-chromanone by benzylic oxidation (Liu et al.24), 3) 

enantioselective protonation of enol ether derived from racemic homoisoflavanones by phase 

transfer catalysts (Levacher et al.25).

Nevertheless, there are still limitations on asymmetric synthesis of homoisoflavanones with 

various substituents on the A and B rings. Since we undertook a medicinal chemistry 

program on antiangiogenic cremastranone, we have been interested in the asymmetric 

synthesis of cremastranone and the biological effects of chiral homoisoflavanones. 

Moreover, our synthetic route would be very useful for introducing chemical diversity and 

for the structural optimization of homoisoflavanone derivatives. In screening the best 

conditions for asymmetric synthesis of homoisoflavanones, we found that the Metz group,26 

Merck group,27 and others28 developed asymmetric syntheses of chroman-4-ones, including 

flavanone and isoflavanone, by asymmetric transfer hydrogenation using Noyori’s catalysts.
29,30 Thus, we envisioned asymmetric transfer hydrogenation of the 3-benzyl-chroman-4-

ones 1 and 2 by two Noyori’s ruthenium catalysts (RuCl(p-cymene)[(R,R)-Ts-DPEN], 

(R,R)-4, and RuCl(p-cymene)[(S,S)-Ts-DPEN], (S,S)-4) and subsequent re-oxidation of the 

resulting 3-benzyl-chroman-4-ol without racemization to provide each (R)- or (S)-

homoisoflavanone (Scheme 1). It was necessary to optimize the reaction conditions through 

which the reduction of the enolizable ketone of homoisoflavanone would proceed 

completely by asymmetric transfer hydrogenation to afford enantiomerically pure 3-benzyl-

chroman-4-ol. It would be notable if dynamic kinetic resolution accompanied the 

asymmetric transfer hydrogenation for the enantioselective synthesis of homoisoflavanones, 

as shown in a previous work.26,27,31

Herein, we describe enantioselective synthesis and structural elucidation of the naturally 

occurring homoisoflavanone cremastranone with (R)-configuration and its (S)-enantiomer in 

which stereochemistry dictates in vitro efficacy against angiogenesis. It was shown that the 

stereoisomers with an (S)-configuration on the C3-position are generally superior to the 

opposite isomers (natural forms) in terms of antiangiogenic efficacy. In addition, we present 

an efficient method to access several enantioenriched derivatives of homoisoflavanones and 

reveal the dynamic kinetic resolution mechanism of asymmetric transfer hydrogenation by 

time-dependent concentration.

RESULTS AND DISCUSSION

Chemistry

Our initial work was to prepare the ketone substrates for asymmetric transfer hydrogenation 

(Scheme 2). With two 2-hydroxyacetophenones in hand, 5,6,7-trisubstituted-

homoisoflavanones 5a and 5b were prepared via our previous method in which N,N-

dimethylformamide dimethyl acetal was used, followed by catalytic hydrogenation or 
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LiAlH4 reduction of 4H-chromen-4-one.17,32 The resulting chroman-4-ones 5a and 5b were 

treated with isovanillin and p-TsOH, then subsequent catalytic hydrogenation afforded the 

homoisoflavanones 2 and 6. To screen the substrates for asymmetric transfer hydrogenation, 

two benzyl-protected analogs of homoisoflavanones (7 and 8) were generated using BnBr 

and K2CO3 from 2 and 6, respectively. With four homoisoflavanones in hand, we attempted 

the synthesis of homoisoflavon-4-ol derivatives by diastereoselective (cis or trans) and 

enantioselective (R- or S-configuration) methods.

First, C4-carbonyl reduction of homoisoflavonoids was carried out using some metal 

hydride agents to study the chemical yield and the ratio of the cis- to trans-isomer of 3-

benzyl-chroman-4-ol (Table 1).33 Homoisoflavanones 2 and 7 were treated with NaBH4 or 

NaBH4/CeCl3 to provide the resulting rac-9a and rac-9c with cis/trans ratio of 3.3:1 and 

3.5:1, respectively. The cis/trans diastereoselectivity was not improved in the case of general 

procedures using LiAlH4, DIBAL and Super-H®. Unlike the other metal hydride reagents, 

L-selectride afforded cis-9a and cis-9c, respectively, as a major product selectively with 89% 

and 99% yield. The structural elucidation of the cis- and trans-isomers of 3-benzyl-

chroman-4-ol rac-9a was confirmed by 2D NOESY NMR spectroscopy (Supplementary 

Figure S1).34

For the enantioselective synthesis of 3-benzyl-chroman-4-ol, the asymmetric transfer 

hydrogenation was performed with a Noyori’s ruthenium catalyst, RuCl(p-cymene)[(R,R)-

Ts-DPEN], (R,R)-4 in order to obtain (3R,4R)-9a selectively (Table 2). Initially, the use of 5 

mol% of (R,R)-4 or the mixture of KOH and i-PrOH as a hydrogen source was ineffective. 

A mixture of triethylamine and formic acid was chosen as a hydrogen source and ethyl 

acetate was used as a solvent. Low yields were observed without degassing (entry 1 vs 2). 

Although the yield was not sufficient under these conditions, the ratio of cis/trans and 

enantioselectivity for cis-9a was promising (entry 2). The cis/trans ratio was calculated with 
1H-NMR spectroscopy and enantioselectivity was confirmed by chiral HPLC analysis on 

Chiralpak AD-3 after the optimization of HPLC conditions with racemic cis-9a. The 3:1 

ratio (v/v) of base and formic acid improved yields based on recovered starting material 

(entries 4 and 5). However, the chemical yield was not improved with 10–20 mol% of 

(R,R)-4, regardless of screening solvent, base, and the ratio of base and formic acid. The low 

reactivity under general asymmetric transfer hydrogenation conditions is due to the steric 

hindrance of the C5-methoxy on the A ring. Given the above results, we postulated that the 

yield is limited under various conditions, as (R)-homoisoflavanone could react much faster 

than the (S)-form just by kinetic resolution. Fortunately, the reactions with 30 mol% (R,R)-4 
and (S,S)-4 gave rise to excellent yield and enantioselectivity (91–96%, 97%ee). As the 

carbonyl group in 2 has quite low reactivity due to C5 methoxy group, the chemical yield 

could increase by loading 30 mol% catalyst and extending the reaction time. Thus, the 

asymmetric transfer hydrogenation worked with accompanying dynamic kinetic resolution 

(entries 9–11). The optimized condition was a 3:1 ratio of DBU and formic acid in 

acetonitrile (entry 10). Similarly, (3S,4S)-9a could be obtained by 30 mol% of (S,S)-4 
successfully (entry 11). A high proportion of DBU affected the ratio of the cis/trans isomers 

and the chemical yield (entry 12). To our knowledge, there are no reports on the asymmetric 

transfer hydrogenation of chroman-4-ones that contain a C5-substituent on A ring, but we 
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succeeded in the asymmetric transfer hydrogenation of a 5-substituted 3-benzyl-chroman-4-

one such as 5,6,7-trimethoxy-homoisoflavanone and the NMR spectra of (3R,4R)-9a and 

(3S,4S)-9a are identical to those of the racemic cis-9a.

As a means to elucidate the absolute configuration of 3-benzyl-chroman-4-ol’s C4 

secondary alcohol, the ECD spectra of two enantiopure cis-9a isomers synthesized by 

asymmetric transfer hydrogenation using (R,R)-4 and (S,S)-4 were measured. Following 

many reports on asymmetric transfer hydrogenation, the two enantiomers of cis-9a were 

regarded to be (3R,4R)-9a and (3S,4S)-9a, respectively.26 The enantiomers (3R,4R)-9a and 

(3S,4S)-9a, with 98%ee and 93%ee, as determined by chiral HPLC, showed positive and 

negative optical rotation, respectively. The experimental ECD confirmed that the two 

compounds have the opposite configuration as enantiomers (Figure 3; Supplementary Table 

S1). The theoretical calculations of the ECD spectra were performed for a pair of 

enantiomers of cis-9a using time-dependent density functional theory (TD-DFT) at the 

B3LYP functional and the 6–31+G(d) basis set via Gaussian 09. As expected, the calculated 

ECD spectra of (3R,4R)-9a and (3S,4S)-9a were consistent with their experimental curves. 

Therefore, the full stereochemistry of two chiral 3-benzyl-chroman-4-ols was obtained by 

asymmetric transfer hydrogenation was assigned through the ECD and NMR spectra.

With (3R,4R)-9a in hand, we studied the oxidation of the C4 secondary alcohol without 

racemization to obtain the chiral homoisoflavanone (R)-2 under various conditions such as 

TPAP/NMO, PCC, Dess-Martin periodinane and Swern oxidation. Unexpectedly, most 

oxidation reactions did not proceed due to the phenol group on the C3ʹ position, as was also 

predicted to affect the synthesis of cremastranone. After introducing a benzyl group to the 

phenol group at the C3ʹ and C7 positions, asymmetric transfer hydrogenation of the benzyl-

protected ketones (7 and 8) as well as the ketone 6 containing two phenol groups was carried 

out (Table 3). Not surprisingly, the ketone 6 was not converted into the alcohol 9b under two 

different conditions using Et3N and DBU (entries 1 and 2). The chemical yield was low after 

the treatment of the ketone 7 with 10 mol% of (R,R)-4 but the enantioselectivity of the cis-

isomer was >90%ee (entries 3 and 4). DBU was superior to Et3N as a base in terms of 

chemical yield and enantioselectivity, and acetonitrile was used as the preferred solvent 

rather than ethyl acetate. The carbonyl reduction of 7 with 30 mol% of (R,R)-4 and (S,S)-4, 

DBU and formic acid afforded (3R,4R)-9c and (3S,4S)-9c in 92%–93% yield and 93%ee–

97%ee, respectively. The ketone 8, a precursor of cremastranone, was treated with 30 mol% 

of (R,R)-4 and (S,S)-4 to provide (3R,4R)-9d and (3S,4S)-9d in 87%–92% yield and 

96%ee–98%ee, respectively.

With the pair of enantiomers of 9c, the oxidation of secondary alcohol under TPAP and 

NMO conditions, followed by benzyl deprotection provided the desired chiral (R)-2 and 

(S)-2 in moderate yield (Scheme 3). Fortunately, the two-step reaction did not cause 

epimerization. Moreover, chiral (R)-2 and (S)-2 were coupled with two different 

enantiomers of Boc-phenylalanine under EDCI-mediated conditions to provide four 

stereoisomers of antiangiogenic homoisoflavanone 3: (R,R)-, (S,R)-, (R,S)-, and (S,S)-3, 

respectively. Chiral 3-benzyl-chromanes were considered as attractive derivatives of 

homoisoflavonoids; a racemic 3-benzyl-chromane 10 reported recently showed potent 
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activity.35 Thus, (S)-3-benzyl-chromane (S)-10 was obtained from (3R,4R)-9a by treatment 

with triethylsilane. Similarly, the enantiomer (R)-10 was generated from (3S,4S)-9a. 

Triethylsilane was more useful to obtain the enantiopure 3-benzyl-chromane compounds 

than H2 and Pd/C for minimizing racemization. Unfortunately, the catalytic hydrogenation 

of chiral (R)-2 and (S)-2 afforded (S)-10 and (R)-10 in only 71%ee and 78%ee, respectively.

With (3R,4R)-9d and (3S,4S)-9d in hand, we explored the asymmetric synthesis of the 

natural product homoisoflavanone, cremastranone (1) for the first time (Scheme 4). Similar 

to the oxidation issue of (3R,4R)-9a, we observed that the alcohol oxidation of (3R,4R)-9b, 

did not work, although various oxidizing reagents were screened. Thus, Ley’s oxidation of 

benzyl-protected (3R,4R)-9d was used, followed by BCl3-mediated deprotection to give the 

desired cremastranone (1) in a quantitative yield. The synthetic cremastranone obtained 

stereoselectively exhibited a negative rotation with [α]D
20 ‒33.0 (c 0.20, MeOH) and its 

NMR spectra were identical to those of naturally occurring cremastranone of which the 

optical rotation was reported with [α]D
20 ‒16.0 (c 0.20, MeOH). These experimental data 

suggested that naturally occurring cremastranone possesses an (R)-configuration at the C3 

position of the 3-benzyl-chroman-4-one skeleton. Starting from (3S,4S)-9d, the (S)-

enantiomer of cremastranone ((S)-1) were obtained in a similar manner.

We also studied the time-concentration of ketone 2 and alcohol 9a in order to prove the 

mechanism of asymmetric transfer hydrogenation under our developed conditions. To 

investigate the dynamic kinetic resolution of rac-2, we monitored the progress of (3S,4S)-9a 
formation via asymmetric transfer hydrogenation of (R)-2 and (S)-2 with (S,S)-4 by chiral 

HPLC (Figure 4). After 6 h, alcohol (3S,4S)-9a and (S)-2 were generated at 34% and 18%, 

respectively. We speculated that the racemization on the C3-position occurred to generate 

(S)-2, which could be converted to (3S,4S)-9a whereas in this reaction using (S,S)-4, starting 

material, (R)-2 was not directly transformed into the trans-isomer (3S,4R)-9a. The yield of 

(3S,4S)-9a was increased by 24 h and the enantioselectivity of cis-isomer was improved up 

to 98%ee. After 24 h, the ratio of cis- to trans-isomer was 10 : 1 and (3R,4R)-9a was no 

more than 2% ((a), Figure 4). The reaction of starting material (S)-2 using catalyst (S,S)-4 
afforded (3S,4S)-9a in 74% yield and 99.9%ee, even after 6 h. As 8%–11% of (R)-2 was 

found at 6 and 12 h, it was confirmed that racemization occurred partially. Finally, (3S,

4S)-9a was provided in 89% yield and 99.9%ee at 24 h.

Antiangiogenic activity of enantiopure homoisoflavanones

As the absolute configuration of natural cremastranone was assigned as the (R)-form and 

each pair of enantiomers which are 5,6,7-trisubstituted homoisoflavanones were obtained, 

we considered the antiangiogenic activity of enantiopure homoisoflavanones as (R)- and (S)-

isomers compared with that of racemic mixtures. Previously, the GI50 value of 

cremastranone isolated from C. appendiculata against HUVECs was reported as 1.5 μM 

(Figure 1).12 In contrast, the growth suppressive activity of racemic cremastranone 1 
(synthesized by our group) against HUVECs was GI50 = 377 nM in an alamarBlue 

fluorescence cell proliferation assay (Figure 1).14a In addition, synthetic 1 showed a dose-

dependent, anti-proliferative activity of GI50 = 217 nM against HRECs, a more tissue-

relevant, microvascular endothelial cell type. As suggested previously, the somewhat more 
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pronounced inhibitory effect of synthetic compound 1 over the natural product might be due 

to differences in the biological assays used or purity of the compound. Between the racemic 

and enantiopure cremastranones, (R)-1 exhibited somewhat weaker inhibitory activity on 

cell proliferation for HUVECs and HRECs than that of the racemate and (S)-1.

The (S)-isomer of 5,6,7-trimethoxyhomoisoflavanone derivative 2 had 20-fold higher 

activity than the (R)-isomer, similar to that of cremastranone (Table 4). Among the four 

stereoisomers of SH-11037 (3), the isomer (S,S)-3 which was incorporated with the 

coupling of (S)-2 and Boc-L-Phe-OH showed the strongest inhibition of HREC growth. In 

antiangiogenic activity of 3-benzyl-chroman-4-ol 9, the cis-disubstituted chromane has 

activity as strong as 3 but the trans-form lost the inhibitory activity in HRECs. In addition, 

the pair of 3-benzyl-chromanes 10 were evaluated for anti-angiogenic activity. In 

alamarBlue proliferation assays, racemic and (R)-10 had the most pronounced potency and 

endothelial-cell selectivity among the antiangiogenic homoisoflavonoids that were made.

Previously, we evaluated the cell specificity of synthetic homoisoflavanones by assessing 

their anti-proliferative effects on non-endothelial ocular cell lines, 92–1 (uveal melanoma 

cell line) and Y79 (retinoblastoma cell line), as surrogates for non-target ocular tissues. The 

anti-proliferative activity of racemic mixture 3 on these non-endothelial cell types was 

considerably less than that on endothelial cells (GI50 = 12 μM and >100 μM for Y79 and 

92–1, respectively), suggesting that racemic mixture 3 has pronounced selectivity of 

antiproliferative effect toward endothelial cells. This trend was also seen for the (R)- or (S)-

isomers, although in general in the current work, Y79 cells were more sensitive than in 

previous reports, likely reflective of a cell batch effect.

Validation of a potent cremastranone derivative in cell-based assays

After demonstrating that enantiopure homoisoflavanones had anti-proliferative activity 

against HRECs, we explored HREC migration and tube formation in the presence of anti-

angiogenic homoisoflavanones and a comparison between more highly anti-proliferative (S)-

homoisoflavanones and (R)-antipodes. These assays document key properties of endothelial 

cells and together provide a good model for the angiogenesis that occurs in vivo. During 

angiogenesis, cells migrate out from pre-existing capillaries to the location of neovessel 

formation. We assessed the migration ability of HRECs via the scratch-wound assay, in 

which a scratch was introduced to a confluent monolayer of HRECs. Migrated cells into the 

area of the scratch were counted in response to differing concentrations of enantiopure 

homoisoflavanones (Figure 5). HREC migration was dose-dependently inhibited by the 

enantiopure homoisoflavanones (Figure 5). The (S)-isomers of 2 and 3 showed more potent 

effects than their (R)-forms. Similarly, the 3-benzyl-chromane (R)-10, which is the same 

conformation as the (S)-homoisoflavanones, had stronger inhibitory activity than the 

enantiomer (S)-10. However, (R)-1 was more potent than (S)-1 in this system.

The Matrigel tube formation assay requires most of the events of angiogenesis in vivo to be 

replicated, including migration, proliferation, and cell-cell adhesion. All enantiopure 

homoisoflavanones, with the exception of 2, reduced tubule length in a dose-dependent 

fashion (Figure 6). Again, the (S)-isomer of homoisoflavanone derivative 3 had more 
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favorable activity than the (R)-isomer, with the conformationally similar (R)-10 again 

showing stronger inhibitory activity than (S)-10.

CONCLUSION

We have developed asymmetric synthesis for the antiangiogenic natural product 

cremastranone and its homoisoflavanone derivatives. For this, asymmetric transfer 

hydrogenation of racemic 5,6,7-substituted-homoisoflavanones using Noyori’s ruthenium 

catalysts afforded the enantiopure 3-benzyl-chroman-4-ol derivatives with excellent yield 

and enantioselectivity, although the C5-methoxy on the A ring affected the reactivity in the 

asymmetric transfer hydrogenation. By TPAP oxidation, (R)-3-benzyl-chroman-4-ol was 

oxidized smoothly into (R)-3-benzyl-chroman-4-one without racemization. During the 

enantioselective synthesis of cremastranone, a benzyl group was utilized as a protecting 

group for asymmetric transfer hydrogenation and alcohol oxidation. Two stereoisomers of 

homoisoflavanones synthesized were evaluated for their antiproliferative activity against 

HRECs and HUVECs, and the activity of the (S)-isomer was generally more effective than 

that of the (R)-form and racemate.. Interestingly, the absolute configuration of the natural 

product cremastranone was confirmed as the (R)-form, whereas the anti-angiogenic effect of 

the opposite (S)-homoisoflavanone was superior to the natural (R)-form in synthetic 

derivatives.

EXPERIMENTAL SECTION

Chemistry.

All starting materials and reagents were obtained from commercial sources and used without 

further purification. Air and moisture sensitive reactions were performed under nitrogen. 

Flash column chromatography was performed using silica gel 60(230–400 mesh, Merck) 

with the indicated solvents. Thin-layer chromatography (TLC) was performed using 0.25 

mm silica gel plates (Merck). 1H and 13C{1H} NMR spectra were recorded on a Bruker 600 

MHz spectrometer as solution in deuterochloroform (CDCl3) or methanol-d4 (CD3OD). 1H 

NMR data were reported in the order of chemical shift, multiplicity (s, singlet; d, doublet; t, 

triplet; q, quartet; m, multiplet and/or multiplet resonances), number of protons, and 

coupling constant (J value) in hertz (Hz). Enantiomeric excesses were determined by HPLC 

on an Agilent 1100 using one chiral column (Chiralpak AD-3 and IC-3). High resolution 

mass spectra (HRMS) were recorded on a JEOL JMS-700 (EI) and an Agilent 6530 Q-TOF 

LC/MS/MS system (ESI). The ECD spectra were acquired on an Applied Photophysics 

Chirascan-Plus circular dichroism spectrometer.

3-(3-Hydroxy-4-methoxybenzyl)-5,6,7-trimethoxychroman-4-one (2).

To a toluene (16 mL) solution of the 5,6,7-trimethoxychroman-4-one (5a) (1.0 g, 4.2 mmol) 

was added isovanillin (0.70 g, 4.6 mmol) and p-toluenesulfonic acid (82 mg, 0.43 mmol). 

The reaction mixture was refluxed for 12 h. After cooling to ambient temperature, the 

reaction mixture was concentrated under reduced pressure. The residue was purified by flash 

column chromatography on silica gel (ethyl acetate : n-hexane = 1 : 2) to afford the (E)-3-(3-

hydroxy-4-methoxybenzylidene)-5,6,7-trimethoxychroman-4-one (0.96 g, 60%, BORSM 
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70%). 1H NMR (600 MHz, CDCl3) δ 7.75 (s, 1H), 6.91 (d, 1H, J = 8.3 Hz), 6.88 (d, 1H, J = 

2.0 Hz), 6.86 (t, 1H, J = 4.1 Hz), 6.26 (s, 1H), 5.69 (s, 1H), 5.25 (d, 2H, J = 1.7 Hz), 3.99 (s, 

3H), 3.95 (s, 3H), 3.89 (s, 3H), 3.84 (s, 3H). 13C{1H} NMR (150 MHz, CDCl3) δ 179.6, 

171.2, 159.4, 159.2, 154.8, 147.5, 145.6, 136.3, 130.2, 128.2, 123.3, 115.8, 110.6, 96.2, 

67.7, 61.7, 61.4, 60.4, 56.1, 56.0. HRMS (EI) m/z: [M]+ Calcd for C20H20O7 Calcd for 

C20H20O7 372.1209; found 372.1208. A methanol solution of the (E)-3-(3-hydroxy-4-

methoxybenzylidene)-5,6,7-trimethoxychroman-4-one (0.58 g, 1.6 mmol) and 10% Pd/C (82 

mg) was placed under an atmosphere of hydrogen. After stirring for 20 min, the reaction 

mixture was diluted with ethyl acetate, filtered through a Celite pad, and concentrated under 

reduced pressure. The residue was purified by flash column chromatography on silica gel 

(ethyl acetate : n-hexane = 1 : 1) to afford the 3-(3-hydroxy-4-methoxybenzyl)-5,6,7-

trimethoxychroman-4-one (2) (0.57 g, 97%).1H NMR (600 MHz, CDCl3) δ 6.82 (q, 2H, J = 

4.8 Hz), 6.73 (q, 1H, J = 3.4 Hz), 6.27 (s, 1H), 5.63 (d, 1H, J = 1.9 Hz), 4.29 (q, 1H, J = 5.2 

Hz), 4.12 (q, 1H, J = 6.3 Hz), 3.95 (s, 3H), 3.90 (d, 6H, J = 1.9 Hz), 3.84 (s, 3H), 3.20 (q, 

1H, J = 6.1 Hz), 2.76 (m, 1H), 2.60 (q, 1H, J = 8.3 Hz). 13C{1H} NMR (150 MHz, CDCl3) δ 
191.4, 159.8, 159.3, 154.5, 145.7, 145.3, 137.5, 131.7, 120.6, 115.3, 110.8, 108.0, 96.0, 

69.1, 61.6, 61.3, 56.1, 56.0, 48.3, 32.2. HRMS (ESI) m/z: [M+H] + Calcd for C20H22O7H 

375.1444; found 375.1432.

7-Hydroxy-3-(3-hydroxy-4-methoxybenzyl)-5,6-dimethoxychroman-4-one (6).

To a toluene (3 mL) solution of the 7-benzyloxy-5,6-dimethoxychroman-4-one (5b) (0.27 g, 

0.86 mmol) was added isovanillin (0.16 g, 0.99 mmol) and p-toluenesulfonic acid (19 mg, 

0.10 mmol) at 0 °C. The reaction mixture was refluxed for 12 h. After cooling to ambient 

temperature, the reaction mixture was concentrated under reduced pressure. The residue was 

purified by flash column chromatography on silica gel (ethyl acetate : n-hexane = 1 : 2) to 

afford the (E)-7-(benzyloxy)-3-(3-hydroxy-4-methoxybenzylidene)-5,6-

dimethoxychroman-4-one (0.23 g, 59%, BORSM 76%). 1H NMR (600 MHz, CDCl3) δ 
7.74 (s, 1H), 7.44 (d, 2H, J = 7.1 Hz), 7.40 (t, 2H, J = 7.5 Hz), 7.34 (m, 1H), 6.90 (d, 1H, J = 

8.3 Hz), 6.87 (d, 1H, J = 2.0 Hz), 6.84 (q, 1H, J = 3.5 Hz), 6.31 (s, 1H), 5.68 (s, 1H), 5.22 (d, 

2H, J = 1.7 Hz), 5.14 (s, 2H), 4.00 (s, 3H), 3.94 (s, 3H), 3.85 (s, 3H). 13C{1H} NMR (150 

MHz, CDCl3) δ 179.6, 159.2, 158.3, 154.9, 147.5, 145.6, 138.2, 136.3, 135.9, 130.2, 128.7, 

128.3, 128.2, 127.3, 123.3, 115.8, 110.9, 110.6, 97.5, 70.7, 67.7, 61.7, 61.4, 56.0. A 

methanol solution of the (E)-7-(benzyloxy)-3-(3-hydroxy-4-methoxybenzylidene)-5,6-

dimethoxychroman-4-one (0.27 g, 0.60 mmol) and 10% Pd/C (64 mg) was placed under an 

atmosphere of hydrogen. After stirring for 45 min, the reaction mixture was diluted with 

ethyl acetate, filtered through a Celite pad, and concentrated under reduced pressure. The 

residue was purified by flash column chromatography on silica gel (ethyl acetate : n-hexane 

= 1 : 2) to afford the 7-hydroxy-3-(3-hydroxy-4-methoxybenzyl)-5,6-dimethoxychroman-4-

one (6) (0.20 mg, 94%). 1H NMR (600 MHz, CDCl3) δ 6.80 (d, 2H, J = 2.0 Hz), 6.79 (d, 

1H, J = 8.2 Hz), 6.71 (dd, 1H, J = 8.2 and 2.0 Hz), 6.33 (d, 1H, J = 5.8 Hz), 6.31 (s, 1H), 

5.59 (s, 1H), 4.26 (dd, 1H, J = 11.3 and 4.1 Hz), 4.09 (dd, 1H, J = 11.3 and 7.6 Hz), 3.92 (s, 

3H), 3.91 (s, 3H), 3.87 (s, 3H), 3.17 (dd, 1H, J = 14.4 and 4.4 Hz), 2.74 (m, 1H), 2.59 (dd, 

1H, J = 14 and 10.7 Hz). 13C{1H} NMR (150 MHz, CDCl3) δ 191.6, 159.9, 155.6, 153.5, 

145.7, 145.3, 135.2, 131.7, 120.6, 115.2, 110.8, 108.7, 98.9, 68.9, 61.6, 61.5, 56.0, 48.4, 

32.2. HRMS (ESI) m/z: [M+H]+ Calcd for C19H20O7H 361.1287; found 361.1270.
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3-(3-(Benzyloxy)-4-methoxybenzyl)-5,6,7-trimethoxychroman-4-one (7).

To an acetone (10 mL) solution of 3-(3-hydroxy-4-methoxybenzyl)-5,6,7-

trimethoxychroman-4-one (2) (0.40 g, 1.1 mmol), benzyl bromide (0.2 mL, 1.7 mmol) and 

K2CO3 (0.3 g, 2.1 mmol) were added. The reaction mixture was refluxed for 4 h. After 

cooling to ambient temperature, the reaction mixture was diluted with ethyl acetate and the 

organic phase was washed with water and brine, dried over anhydrous MgSO4, and 

concentrated under reduced pressure. The residue was purified by flash column 

chromatography on silica gel (ethyl acetate : n-hexane = 1 : 2) to afford the 3-(3-

(benzyloxy)-4-methoxybenzyl)-5,6,7-trimethoxychroman-4-one (7) (0.50 g, 99%). 1H NMR 

(600 MHz, CDCl3) δ 7.44 (d, 2H, J = 7.2 Hz), 7.36 (t, 2H, J = 7.3 Hz), 7.29 (t, 1H, J = 7.4 

Hz), 6.84 (d, 1H, J = 7.9 Hz), 6.78 (d, 1H, J = 2 Hz), 6.76 (bs, 1H), 6.24 (s, 1H), 5.14 (s, 

2H), 4.17 (dd, 1H, J = 11.3 and 4.1 Hz), 3.98 (dd, 1H, J = 11.4 and 7.5 Hz), 3.93 (s, 3H), 

3.88 (s, 3H), 3.87 (s, 3H), 3.81 (s, 3H), 3.14 (dd, 1H, J = 13.8 and 4.1 Hz), 2.68 (m, 1H), 

2.60 (dd, 1H, J = 13.8 and 10.7 Hz). 13C{1H} NMR (150 MHz, CDCl3) δ 191.4, 159.7, 

159.3, 154.5, 148.5, 148.1, 137.5, 137.1, 130.9, 128.5, 127.9, 127.4, 121.9, 115.3, 111.9, 

108.7, 95.9, 71.1, 68.9, 61.6, 61.3, 56.1, 56.1, 48.4, 32.3. HRMS (EI) m/z: [M]+ Calcd for 

C27H28O7 464.1835; found 464.1837.

7-(Benzyloxy)-3-(3-(benzyloxy)-4-methoxybenzyl)-5,6-dimethoxychroman-4-one (8).

[2 steps from 5b] An anhydrous ethyl acetate solution of (E)-7-(benzyloxy)-3-(3-

(benzyloxy)-4-methoxybenzylidene)-5,6-dimethoxychroman-4-one (88 mg, 0.16 mmol) and 

10% Pd/C (8.7 mg) was placed under an atmosphere of hydrogen. After stirring for 30 min, 

the reaction mixture was diluted with ethyl acetate, filtered through a Celite pad and 

concentrated under reduced pressure. The residue was purified by flash column 

chromatography on silica gel (ethyl acetate : n-hexane = 1 : 4) to afford the 7-(benzyloxy)-3-

(3-(benzyloxy)-4-methoxybenzyl)-5,6-dimethoxychroman-4-one (8) (49 mg, 56%, BORSM 

97%). 1H NMR (600 MHz, CDCl3) δ 7.44 (m, 6H), 7.37 (m, 3H), 7.29 (t, 1H, J = 7.3 Hz), 

6.84 (d, 1H, J = 7.9 Hz), 6.77 (d, 1H, J = 2 Hz), 6.76 (bs, 1H), 6.29 (s, 1H), 5.14 (s, 4H), 

4.17 (dd, 1H, J = 11.3 and 4 Hz), 3.97 (dd, 1H, J = 11.3 and 7.5 Hz), 3.94 (s, 3H), 3.87 (s, 

3H), 3.83 (s, 3H), 3.15 (dd, 1H, J = 13.7 and 4.1 Hz), 2.67 (m, 1H), 2.60 (dd, 1H, J = 13.8 

and 10.7 Hz). 13C{1H} NMR (150 MHz, CDCl3) δ 191. 4, 159.5, 158.4, 154.6, 148.5, 

148.1, 137.8, 137.1, 135.8, 130.9, 128.8, 128.5, 128.3, 127.9, 127.4, 127.3, 121.9, 115.3, 

111.9, 108.9, 97.30, 71.1, 70.7, 68.9, 61.7, 61.4, 56.1, 48.4, 32.3. HRMS (EI) m/z: [M]+ 

Calcd for C33H30O7 538.1992; found 538.1988. [2 steps from 6] 1st step: To a N,N-

dimethylformamide (2 mL) solution of 7-hydroxy-3-(3-hydroxy-4-methoxybenzyl)-5,6-

dimethoxychroman-4-one (6) (22 mg, 0.061 mmol), benzyl bromide (22 μL, 0.18 mmol) and 

Cs2CO3 (60 mg, 0.18 mmol) were added. After stirring for 2 h at ambient temperature, the 

reaction mixture was diluted with ethyl acetate and the organic phase was washed with water 

and brine, dried over anhydrous MgSO4, and concentrated under reduced pressure. The 

residue was purified by flash column chromatography on silica gel (ethyl acetate : n-hexane 

= 1 : 2) to afford the 7-(benzyloxy)-3-(3-(benzyloxy)-4-methoxybenzyl)-5,6-

dimethoxychroman-4-one (8) (24 mg, 72%).
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cis-3-(3-Hydroxy-4-methoxybenzyl)-5,6,7-trimethoxychroman-4-ol (cis-9a).

To an anhydrous tetrahydrofuran (1 mL) solution of 3-(3-hydroxy-4-methoxybenzyl)-5,6,7-

trimethoxychroman-4-one (2) (28 mg, 74 μmol), L-Selectride (0.32 mL, 0.15 mmol, 1 M in 

THF) was added dropwise at −78 °C. After stirring for 30 min, the reaction was quenched 

with NH4Cl, extracted with ethyl ether, dried over MgSO4, and concentrated under reduced 

pressure. The residue was purified by flash chromatography on silica gel (ethyl ether : n-

hexane = 1 : 2) to afford the 3-(3-hydroxy-4-methoxybenzyl)-5,6,7-trimethoxychroman-4-ol 

(cis-9a) (25 mg, 89%) . For cis-9a, 1H NMR (600 MHz, CDCl3) δ 6.84 (d, 1H, J = 2.0 Hz), 

6.79 (d, 1H, J = 8.2 Hz), 6.74 (q, 1H, J = 3.4 Hz), 6.16 (s, 1H), 5.63 (d, 1H, J = 5.0 Hz), 4.69 

(t, 1H, J = 3.0 Hz), 3.96 (s, 5H), 3.87 (s, 3H), 3.79 (s, 3H), 3.78 (s, 3H), 2.85 (q, 1H, J = 7.2 

Hz), 2.58 (q, 1H, J = 7.3 Hz), 2.15 (m, 2H). 13C{1H} NMR (150 MHz, CDCl3) δ 153.4, 

150.8, 149.8, 144.5, 144.0, 134.3, 131.7, 119.4, 114.2, 109.7, 109.5, 94.6, 63.9, 60.3, 59.9, 

59.4, 54.9, 54.8, 39.0, 31.3. For trans-9a, 1H NMR (600 MHz, CDCl3) δ 6.78 (dd, 2H, J = 

5.3 and 3.1 Hz), 6.66 (dd, 1H, J = 8.2 and 2.1 Hz), 6.23 (s, 1H), 5.57 (s, 1H), 4.59 (s, 1H), 

4.11 (dd, 1H, J = 10.9 and 2.3 Hz), 3.99 (s, 3H), 3.95 (m, 1H), 3.88 (s, 3H), 3.84 (s, 3H), 

3.81 (s, 3H), 2.56 (dd, 1H, J = 10.9 and 7 Hz), 2.51 (d, 1H, J = 2.5 Hz), 2.45 (dd, 1H, J = 

13.9 and 9.3 Hz), 2.18 (m, 1H). 13C{1H} NMR (150 MHz, CDCl3) δ 154.4, 153.0, 150.8, 

146.1, 146.1, 135.7, 132.5, 119.8, 115.7, 111.4, 108.3, 95.6, 63.4, 61.0, 60.5, 60.0, 55.1, 

54.9, 41.5, 33.5. HRMS (EI) m/z: [M]+ Calcd for C20H24O7 376.1522; found 376.1519 for 

cis-9a; HRMS (EI) m/z: [M]+ Calcd for C20H24O7 376.1522; found 376.1524 for trans-9a.

(3R,4R)-3-(3-Hydroxy-4-methoxybenzyl)-5,6,7-trimethoxychroman-4-ol ((3R,4R)-9a).

To an acetonitrile (1 mL) solution of 3-(3-hydroxy-4-methoxybenzyl)-5,6,7-

trimethoxychroman-4-one (2) (21 mg, 55 μmol) and RuCl(p-cymene)[(R,R)-Ts-DPEN] 

(R,R)-4 (10 mg, 16 μmol), an acetonitrile (1 mL) solution of DBU/formic acid (75uL : 

25uL) was added at ambient temperature. After stirring for 24 h at 50 °C, the reaction was 

quenched with saturated aqueous NH4Cl solution at ambient temperature. After extraction 

with diethyl ether, the organic layer was washed with an additional portion of saturated 

aqueous NaHCO3 solution, dried over MgSO4, and concentrated under reduced pressure. 

The residue was purified by flash column chromatography on silica gel (ethyl acetate : n-

hexane = 1 : 3) to afford the (3R,4R)-3-(3-hydroxy-4-methoxybenzyl)-5,6,7-

trimethoxychroman-4-ol ((3R,4R)-9a) (20 mg, 96%). [α]D
20= + 100 (c 0.1, CH2Cl2). 

enantiomeric excess = 98%. 1H NMR (600 MHz, CDCl3) 6.85 (d, 1H, J = 2.1 Hz), 6.81 (d, 

1H, J = 8.2 Hz), 6.75 (dd, 1H, J = 8.2 and 2.1 Hz), 6.16 (s, 1H), 5.59 (s, 1H), 4.69 (d, 1H, J = 

3.2 Hz), 3.96 (s, 3H), 3.95 (m, 2H), 3.88 (s, 3H), 3.80 (s, 3H), 3.78 (s, 3H), 2.88 (dd, 1H, J 
=13.9 and 7.7 Hz), 2.60 (dd, 1H, J = 13.9 and 7.9 Hz), 2.17 (m, 2H). 13C{1H} NMR (150 

MHz, CDCl3) δ 153.4, 150.8, 149.8, 144.5, 144.0, 134.3, 131.7, 119.4, 114.2, 109.7, 109.5, 

94.6, 63.9, 60.3, 59.9, 59.4, 54.9, 54.8, 39.0, 31.3. HRMS (EI) m/z: [M]+ Calcd for 

C20H24O7 376.1522; found 376.1515. TR = 27 min (chiral AD-3, n-hexane : EtOH = 60 : 

40, flow rate = 0.5 mL/min).

(3S,4S)-3-(3-hydroxy-4-methoxybenzyl)-5,6,7-trimethoxychroman-4-ol ((3S,4S)-9a).

To an acetonitrile (1 mL) solution of 3-(3-hydroxy-4-methoxybenzyl)-5,6,7-

trimethoxychroman-4-one (2) (20 mg, 53 μmol) and RuCl(p-cymene)[(S,S)-Ts-DPEN] 

Heo et al. Page 12

J Org Chem. Author manuscript; available in PMC 2020 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(S,S)-4 (10 mg, 16 μmol), an acetonitrile (1 mL) solution of DBU/formic acid (75 μL : 25 

μL) was added at ambient temperature. After stirring for 24 h at 50 °C, the reaction was 

quenched with saturated aqueous NH4Cl solution at ambient temperature. After extraction 

with diethyl ether, the organic layer was washed with an additional portion of saturated 

aqueous NaHCO3 solution, dried over MgSO4, and concentrated under reduced pressure. 

The residue was purified by flash column chromatography on silica gel (ethyl acetate : n-

hexane = 1 : 3) to afford the (3S,4S)-3-(3-hydroxy-4-methoxybenzyl)-5,6,7-

trimethoxychroman-4-ol ((3S,4S)-9a) (18 mg, 92%). [α]D
20 = –103 (c 0.1, CH2Cl2). 

enantiomeric excess = 97%. 1H NMR (600 MHz, CDCl3) 6.85 (d, 1H, J = 2.0 Hz), 6.80 (d, 

1H, J = 8.2 Hz), 6.74 (dd, 1H, J = 8.2 and 2.1 Hz), 6.16 (s, 1H), 5.61 (s, 1H), 4.69 (d, 1H, J = 

3.2 Hz), 3.97 (s, 5H), 3.88 (s, 3H), 3.80 (s, 3H), 3.78 (s, 3H), 2.88 (dd, 1H, J = 14 and 7.7 

Hz), 2.60 (dd, 1H, J = 13.9 and 7.9 Hz), 2.15 (m, 2H). 13C{1H} NMR (150 MHz, CDCl3) δ 
153.4, 150.8, 149.8, 144.5, 144.0, 134.3, 131.7, 119.4, 114.2, 109.7, 109.5, 94.6, 63.9, 60.3, 

59.9, 59.4, 54.9, 54.8, 39.0, 31.3. HRMS (EI) M=m/z: [M]+ Calcd for C20H24O7 376.1522; 

found 376.1515. TR = 18 min (chiral AD-3, n-hexane : EtOH = 60 : 40, flow rate = 0.5 mL/

min).

(3R,4R)-3-(3-(benzyloxy)-4-methoxybenzyl)-5,6,7-trimethoxychroman-4-ol ((3R, 4R)-9c).

To an acetonitrile (1 mL) solution of 3-(3-(benzyloxy)-4-methoxybenzyl)-5,6,7-

trimethoxychroman-4-one (7) (13 mg, 28 μmol) and (R,R)-4 (5.2 mg, 8.2 μmol), an 

acetonitrile (1 mL) solution of DBU/formic acid (42 μL:14 μL) was added at ambient 

temperature. After stirring for 24 h at 50 °C, the reaction was quenched with saturated 

aqueous NH4Cl solution at ambient temperature. After extraction with diethyl ether, the 

organic layer was washed with an additional portion of saturated aqueous NaHCO3 solution, 

dried over MgSO4, and concentrated under reduced pressure. The residue was purified by 

flash column chromatography on silica gel (ethyl acetate : n-hexane = 1 : 3) to afford the 

(3R,4R)-3-(3-(benzyloxy)-4-methoxybenzyl)-5,6,7-trimethoxychroman-4-ol ((3R, 4R)-9c) 

(12 mg, 93%). [α]D
20 = + 60 (c 0.05, CH2Cl2). enantiomeric excess = 97%. 1H NMR (600 

MHz, CDCl3) δ 7.44 (d, 2H, J = 7.1 Hz), 7.36 (t, 2H, J = 7.4 Hz), 7.29 (d, 1H, J = 7.4 Hz), 

6.85 (d, 1H, J = 8.1 Hz), 6.82 (s, 1H), 6.81 (d, 2H, J = 7.7 Hz), 6.16 (s, 1H), 5.14 (s, 2H), 

4.61 (s, 1H), 3.94 (s, 3H), 3.91 (d, 2H, J = 8.5 Hz), 3.87 (s, 3H), 3.79 (s, 3H), 3.77 (s, 3H), 

2.83 (dd, 1H, J = 13.9 and 7.9 Hz), 2.57 (dd, 1H, J = 13.9 and 7.8 Hz), 2.11 (m, 1H). 
13C{1H} NMR (150 MHz, CDCl3) δ 154.4, 151.8, 150.8, 148.2, 148.0, 137.2, 135.3, 131.9, 

128.5, 127.8, 127.4, 121.7, 115.4, 112.0, 110.5, 95.6, 71.1, 65.0, 61.3, 60.9, 60.3, 56.1, 55.9, 

40.2, 32.4. HRMS (EI) m/z: [M]+ Calcd for C27H30O7 466.1992; found 466.1989. TR = 6.3 

min (chiral AD-3, n-hexane : EtOH = 60 : 40, flow rate = 1.0 mL/min).

(3S,4S)-3-(3-(benzyloxy)-4-methoxybenzyl)-5,6,7-trimethoxychroman-4-ol ((3S, 4S)-9c).

To an acetonitrile (1 mL) solution of 3-(3-(benzyloxy)-4-methoxybenzyl)-5,6,7-

trimethoxychroman-4-one (7) (38 mg, 82 μmol) and (S,S)-4 (15 mg, 24 μmol), an 

acetonitrile (1 mL) solution of DBU/formic acid (122 μL:40 μL) was added at ambient 

temperature. After stirring for 24 h at 50 °C, the reaction was quenched with saturated 

aqueous NH4Cl solution at ambient temperature. After extraction with diethyl ether, the 

organic layer was washed with an additional portion of saturated aqueous NaHCO3 solution, 

dried over MgSO4, and concentrated under reduced pressure. The residue was purified by 
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flash column chromatography on silica gel (ethyl acetate : n-hexane = 1 : 3) to afford the 

(3S,4S)-3-(3-(benzyloxy)-4-methoxybenzyl)-5,6,7-trimethoxychroman-4-ol ((3S, 4S)-9c) 

(33 mg, 87%). [α]D
20 = + 60 (c 0.05, CH2Cl2). enantiomeric excess = 93%. 1H NMR (600 

MHz, CDCl3) δ 7.44 (d, 2H, J = 7.4 Hz), 7.36 (t, 2H, J = 7.4 Hz), 7.29 (d, 1H, J = 7.4 Hz), 

6.85 (d, 1H, J = 8.0 Hz), 6.81 (d, 2H, J = 7.8 Hz), 6.16 (s, 1H), 5.14 (s, 2H), 4.61 (d, 1H, J = 

3.4 Hz), 3.94 (s, 3H), 3.91 (d, 2H, J = 8.5 Hz), 3.87 (s, 3H), 3.79 (s, 3H), 3.77 (s, 3H), 2.83 

(dd, 1H, J = 13.9 and 7.9 Hz), 2.57 (dd, 1H, J = 13.9 and 7.8 Hz), 2.11 (m, 1H). 13C{1H} 

NMR (150 MHz, CDCl3) δ 154.4, 151.9, 150.8, 148.2, 148.0, 137.2, 135.3, 131.9, 128.5, 

127.8, 127.4, 121.7, 115.4, 112.0, 110.5, 95.6, 71.1, 65.0, 61.3, 60.9, 60.3, 56.1, 55.9, 40.2, 

32.4. HRMS (EI) m/z: [M]+ Calcd for C27H30O7 466.1992; found 466.1999. TR = 5.2 min 

(chiral AD-3, n-hexane : EtOH = 60 : 40, flow rate = 1.0 mL/min).

(3R,4R)-7-(benzyloxy)-3-(3-(benzyloxy)-4-methoxybenzyl)-5,6-dimethoxychroman-4-ol ((3R,
4R)-9d).

To an acetonitrile (1 mL) solution of 7-(benzyloxy)-3-(3-(benzyloxy)-4-

methoxybenzyl)-5,6-dimethoxychroman-4-one (8) (16 mg, 31 μmol) and (R,R)-4 (6.0 mg, 

9.4 μmol), an acetonitrile (1 mL) solution of DBU/formic acid (46 μL:15 μL) was added at 

ambient temperature. After stirring for 24 h at 50 °C, the reaction was quenched with 

saturated aqueous NH4Cl solution at ambient temperature. After extraction with diethyl 

ether, the organic layer was washed with an additional portion of saturated aqueous NaHCO3 

solution, dried over MgSO4, and concentrated under reduced pressure. The residue was 

purified by flash column chromatography on silica gel (ethyl acetate : n-hexane = 1 : 3) to 

afford (3R,4R)-7-(benzyloxy)-3-(3-(benzyloxy)-4-methoxybenzyl)-5,6-

dimethoxychroman-4-ol ((3R,4R)-9d) (14 mg, 87%). enantiomeric excess = 98%. [α]D
20 = 

+56 (c 0.11, CH2Cl2). 1H NMR (600 MHz, CDCl3) δ 7.45 (dd, 4H, J = 9.7 and 7.9 Hz), 

7.37 (dd, 4H, J = 17.8 and 7.4), 7.33 (t, 1H, J = 7.3 Hz), 7.29 (t, 1H, J = 7.4 Hz), 6.86 (d, 1H, 

J = 8.2 Hz), 6.82 (d, 2H, J = 7.2 Hz), 6.22 (s, 1H), 5.15 (s, 2H), 5.06 (s, 2H), 4.62 (s, 1H), 

3.97 (s, 3H), 3.91 (m, 2H), 3.88 (s, 3H), 3.82 (s, 3H), 2.84 (dd, 1H, J = 13.9 and 7.9 Hz), 

2.58 (dd, 1H, J = 13.8 and 7.7 Hz), 2.10 (m, 2H). 13C{1H} NMR (150 MHz, CDCl3) δ 
153.5, 151.9, 150.7, 148.2, 148.0, 137.2, 136.7, 135.7, 131.9, 128.6, 128.5, 127.9, 127.9, 

127.4, 127.2, 121.7, 115.4, 112.0, 110.9, 97.3, 71.1, 70.6, 65.0, 61.4, 61.1, 60.3, 56.1, 40.1, 

32.4. HRMS (EI) m/z: [M]+ Calcd for C33H34O7 542.2305; found 542.2303. TR = 15.6 min 

(chiral AD-3, n-hexane : EtOH = 60 : 40, flow rate = 1.0 mL/min).

(3S,4S)-7-(benzyloxy)-3-(3-(benzyloxy)-4-methoxybenzyl)-5,6-dimethoxychroman-4-ol ((3S,
4S)-9d).

To an acetonitrile (1 mL) solution of 7-(benzyloxy)-3-(3-(benzyloxy)-4-

methoxybenzyl)-5,6-dimethoxychroman-4-one (8) (19 mg, 0.04 mmol) and (S,S)-4 (6.5 mg, 

0.01 mmol), an acetonitrile (1 mL) solution of DBU/formic acid (60 μL:20 μL) was added at 

ambient temperature. After stirring for 24 h at 50 °C, the reaction was quenched with 

saturated aqueous NH4Cl solution at ambient temperature. After extraction with diethyl 

ether, the organic layer was washed with an additional portion of saturated aqueous NaHCO3 

solution, dried over MgSO4, and concentrated under reduced pressure. The residue was 

purified by flash column chromatography on silica gel (ethyl acetate : n-hexane = 1 : 3) to 

afford the (3S,4S)-7-(benzyloxy)-3-(3-(benzyloxy)-4-methoxybenzyl)-5,6-
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dimethoxychroman-4-ol ((3S,4S)-9d) (17 mg, 92%). [α]D
20 = – 53 (c 0.15, CH2Cl2). 

enantiomeric excess = 96%. 1H NMR (600 MHz, CDCl3) δ 7.45 (dd, 4H, J = 10.4 and 7.9 

Hz), 7.39 (dd, 4H, J = 17.6 and 7.3 Hz), 7.33 (t, 1H, J = 7.3 Hz), 7.30 (t, 1H, J = 7.4 Hz), 

6.86 (d, 1H, J = 7.9 Hz), 6.82 (d, 2H, J = 8.0 Hz), 6.22 (s, 1H), 5.15 (s, 2H), 5.06 (s, 2H), 

4.62 (s, 1H), 3.97 (s, 3H), 3.92 (m, 2H), 3.88 (s, 3H), 3.82 (s, 3H), 2.84 (dd, 1H, J = 13.9 

and 7.9 Hz), 2.58 (dd, 1H, J = 13.9 and 7.7 Hz), 2.13m, 1H). 13C{1H} NMR (150 MHz, 

CDCl3) δ 153.5, 151.9, 150.7, 148.2, 148.0, 137.2, 136.7, 135.7, 131.9, 128.6, 128.5, 127.9, 

127.9, 127.4, 127.2, 121.7, 115.4, 112.0, 110.9, 97.3, 71.1, 70.6, 65.0, 61.4, 61.1, 60.3, 56.1, 

40.1, 32.4. HRMS (EI) m/z: [M]+ Calcd for C33H34O7 542.2305; found 542.2302. TR = 10 

min (chiral AD-3, n-hexane : EtOH = 60 : 40, flow rate = 1.0 mL/min).

(R)-3-(3-(benzyloxy)-4-methoxybenzyl)-5,6,7-trimethoxychroman-4-one ((R)-7).

To a dichloromethane (2 mL) solution of (3R,4R)-9c (21 mg, 42 μmol), 

tetrapropylammonium perruthenate (4.5 mg, 12 μmol), molecular sieves (4 Å, 50 mg) and 

N-methylmorpholine N-oxide (7.5 mg, 64 μmol) were added. After stirring for 1 h at 

ambient temperature. the reaction mixture was filtered through a Celite pad with CH2Cl2 as 

eluent, and concentrated under reduced pressure. The residue was purified by flash column 

chromatography on silica gel (ethyl acetate : n-hexane = 1 : 3 to 1 : 1) to afford the (R)-3-

[(3-benzyloxy-4-methoxy-phenyl)methyl]-5,6,7-trimethoxy-chroman-4-one ((R)-7) (20 mg, 

66%). [α]D
20 = – 25 (c 0.12, CH2Cl2). enantiomeric excess = 94%. 1H NMR (600 MHz, 

CDCl3) δ 7.45 (d, 2H, J = 7.1 Hz), 7.37 (t, 2H, J = 7.3 Hz), 7.30 (t, 1H, J = 7.3 Hz), 6.83 (d,

1H, J = 7.9 Hz), 6.78 (d, 1H, J = 1.9 Hz), 6.76 (s, 1H), 6.24 (s, 1H), 5.14 (s, 2H), 4.19 (dd, 

1H, J = 11.3 and 4.1 Hz), 3.97 (dd, 1H, J = 11.3 and 7.4 Hz), 3.93 (s, 3H), 3.89 (s, 3H), 3.87 

(s, 3H), 3.81 (s, 3H), 3.15 (dd, 1H, J = 13.8 and 4.1 Hz), 2.66 (m, 1H), 2.60 (dd, 1H, J = 13.8 

and 10.7 Hz).13C{1H} NMR (150 MHz, CDCl3) δ 191.4, 159.7, 159.3, 154.5, 148.5, 148.1, 

137.5, 137.1, 130.9, 128.5, 127.9, 127.5, 121.9, 115.3, 111.9, 108.7, 95.9, 71.1, 68.9, 61.6, 

61.3, 56.1, 56.1, 48.4, 32.3. HRMS (EI) m/z: [M]+ Calcd for C27H28O7 464.1835; found 

464.1834. TR = 4.7 min (chiral AD-3, ACN : MeOH = 50 : 50, flow rate = 0.5 mL/min).

(R)-3-(3-hydroxy-4-methoxybenzyl)-5,6,7-trimethoxychroman-4-one ((R)-2).

An methanol solution of the (R)-3-(3-(benzyloxy)-4-methoxybenzyl)-5,6,7-

trimethoxychroman-4-one ((R)-7) (11 mg, 24 μmol) and 10% Pd/C (2.6 mg) was placed 

under an atmosphere of hydrogen. After stirring for 1 h, the reaction mixture was diluted 

with ethyl acetate, filtered through a Celite pad, and concentrated under reduced pressure. 

The residue was purified by flash column chromatography on silica gel (ethyl acetate : n-

hexane = 1 : 1) to afford the (R)-3-(3-hydroxy-4-methoxybenzyl)-5,6,7-

trimethoxychroman-4-one ((R)-2) (8.0 mg, 88%). [α]D
20 = – 37 (c 0.11, CH2Cl2). 

enantiomeric excess = 96%. 1H NMR (600 MHz, CDCl3) δ 6.80 (d, 1H, J = 2 Hz), 6.80 (d, 

1H, J = 8.2 Hz), 6.71 (dd, 1H, J = 8.2 and 2.0 Hz), 6.25 (s, 1H), 5.60 (s, 1H), 4.28 (dd, 1H, J 
= 11.3 and 4.2 Hz), 4.10 (dd, 1H, J = 11.3 and 7.7 Hz), 3.93 (s, 3H), 3.88 (d, 6H, J = 2.6 

Hz), 3.82 (s, 3H), 3.19 (dd, 1H, J = 14 and 4.3 Hz), 2.76 (m, 1H), 2.60 (dd, 1H, J = 14 and 

10.9 Hz). 13C{1H} NMR (150 MHz, CDCl3) δ 191.4, 159.7, 159.3, 154.5, 145.7, 145.3, 

137.5, 131.7, 120.6, 115.2, 110.8, 108.7, 96.0, 69.1, 61.6, 61.3, 56.1, 56.0, 48.4, 32.2. 

HRMS (EI) m/z: [M]+ Calcd for C20H22O7 374.1366; found 374.1366. TR = 5.0 min (chiral 

AD-3, ACN : MeOH = 50 : 50, flow rate = 1.0 mL/min). For (S)-2, [α]D
20 = + 40 (c 0.10, 
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CH2Cl2). enantiomeric excess = 99%. TR = 5.0 min (chiral AD-3, ACN : MeOH = 50 : 50, 

flow rate = 0.5 mL/min).

2-Methoxy-5-(((R)-5,6,7-trimethoxy-4-oxochroman-3-yl)methyl)phenyl(tert-butoxycarbonyl)-
L-phenylalaninate ((R,S)-3).

To a dichloromethane solution (1 mL) of (R)-3-(3-hydroxy-4-methoxybenzyl)-5,6,7-

trimethoxychroman-4-one ((R)-2) (13 mg, 33 μmol) were added Boc-L-Phe-OH (11 mg, 42 

μmol), EDCI (10 mg, 52 μmol) and DMAP (1 mg, 8.2 μmol). After stirring for 17 h, the 

reaction mixture was diluted with dichloromethane and washed with water and brine, dried 

over MgSO4 and concentrated under reduced pressure. The residue was purified by flash 

column chromatography on silica gel (ethyl acetate : n-hexane = 1 : 2) to afford the 2-

methoxy-5-(((R)-5,6,7-trimethoxy-4-oxochroman-3-yl)methyl)phenyl(tert-butoxycarbonyl)-

D-phenylalaninate ((R,S)-3) (17 mg, 80%). [α]D
20 = – 28 (c 0.17, CH2Cl2). enantiomeric 

excess = >99%. 1H NMR (600 MHz, CDCl3) δ 7.35 (t, 2H, J = 7.5 Hz), 7.30 (t, 3H, J = 7 

Hz), 7.18 (d, 1H, J = 6.5 Hz), 7.09 (dd, 1H, J = 8.3 and 1.9 Hz), 6.92 (d, 1H, J = 8.4 Hz), 

6.84 (s, 1H), 6.25 (s, 1H), 5.03 (d, 1H, J = 8.4 Hz), 4.86 (dd, 1H, J = 14.2 and 6.2 Hz), 4.30 

(dd, 1H, J = 11.3 and 4.1 Hz), 4.10 (dd, 1H, J = 11.3 and 7.6 Hz), 3.93 (s, 3H), 3.89 (s, 3H), 

3.82 (s, 3H), 3.81 (s, 3H), 3.35 (dd, 1H, J = 14.0 and 5.7 Hz), 3.24 (dd, 1H, J = 14 and 6.4 

Hz), 3.20 (dd, 1H, J = 14 and 4.3 Hz), 2.74 (m, 1H), 2.65 (dd, 1H, J = 13.9 and 10.7 Hz), 

1.42 (s, 9H). 13C{1H} NMR (150 MHz, CDCl3) δ 191.1, 170.1, 159.7, 159.4, 155.1, 154.5, 

149.7, 139.3, 137.5, 136.0, 131.1, 129.6, 128.6, 127.6, 127.1, 123.4, 112.7, 108.7, 96.0, 

80.0, 68.9, 61.6, 61.3, 56.1, 55.9, 54.4, 48.3, 38.3, 31.8, 28.3. HRMS (EI) m/z: [M]+ Calcd 

for C34H39NO10 621.2574; found 621.2573. TR = 171.9 min (chiral IC, IC-3, TFA in DW : 

ACN = 50 : 50, flow rate = 0.7 mL/min).

2-Methoxy-5-(((R)-5,6,7-trimethoxy-4-oxochroman-3-yl)methyl)phenyl(tert-butoxycarbonyl)-
D-phenylalaninate ((R,R)-3).

To a dichloromethane solution (1 mL) of (R)-3-(3-hydroxy-4-methoxybenzyl)-5,6,7-

trimethoxychroman-4-one ((R)-2) (22 mg, 59 μmol) were added Boc-D-Phe-OH (19 mg, 72 

μmol), EDCI (17 mg, 89 μmol) and DMAP (1.5 mg, 12 μmol). After stirring for 17 h, the 

reaction mixture was diluted with dichloromethane and washed with water and brine, dried 

over MgSO4 and concentrated under reduced pressure. The residue was purified by flash 

column chromatography on silica gel (ethyl acetate : n-hexane = 1 : 2) to afford the 2-

methoxy-5-(((R)-5,6,7-trimethoxy-4-oxochroman-3-yl)methyl)phenyl(tert-butoxycarbonyl)-

D-phenylalaninate ((R,R)-3) (27 mg, 73%). [α]D
20 = – 20 (c 0.27, CH2Cl2). enantiomeric 

excess = 99%. 1H NMR (600 MHz, CDCl3) δ 7.33 (m, 5H), 7.08 (d, 1H, J = 7.7 Hz), 6.92 

(d, 1H, J = 8.1 Hz), 6.84 (s, 1H), 6.26 (s, 1H), 5.03 (bs, 1H), 4.87 (d, 1H, J = 5.6 Hz), 4.28 

(d, 1H, J = 8.2 Hz), 4.10 (m, 1H), 3.93 (s, 3H), 3.88 (s, 3H), 3.81 (s, 3H), 3.81 (s, 3H), 3.34 

(dd, 1H, J = 13.1 and 4.3 Hz), 3.22 (m, 2H), 2.72 (bs, 1H), 2.65 (t, 1H, J = 12.8 Hz), 1.42 (s, 

9H). 13C{1H} NMR (150 MHz, CDCl3) δ 191.1, 170.1, 159.7, 159.4, 155.1, 154.5, 149.7, 

139.3, 137.5, 136.0, 131.1, 129.6, 128.6, 127.6, 127.1, 123.4, 112.7, 108.7, 96.0, 80.0, 68.9, 

61.6, 61.3, 56.1, 55.9, 54.4, 48.3, 38.3, 31.8, 28.3. HRMS (EI) m/z: [M]+ Calcd for 

C34H39NO10 621.2574; found 621.2574. TR = 138.8 min (chiral IC, IC-3, TFA in DW : 

ACN = 50 : 50, flow rate = 0.7 mL/min).
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2-Methoxy-5-(((S)-5,6,7-trimethoxy-4-oxochroman-3-yl)methyl)phenyl(tert-butoxycarbonyl)-
L-phenylalaninate ((S,S)-3).

To a dichloromethane solution (1 mL) of (S)-3-(3-hydroxy-4-methoxybenzyl)-5,6,7-

trimethoxychroman-4-one ((S)-2) (10 mg, 28 μmol) were added Boc-L-Phe-OH (9 mg, 34 

μmol), EDCI (8 mg, 42 μmol) and DMAP (0.6 mg, 4.9 μmol). After stirring for 17 h, the 

reaction mixture was diluted with dichloromethane and washed with water and brine, dried 

over MgSO4 and concentrated under reduced pressure. The residue was purified by flash 

column chromatography on silica gel (ethyl acetate : n-hexane = 1 : 2) to afford the 2-

methoxy-5-(((S)-5,6,7-trimethoxy-4-oxochroman-3-yl)methyl)phenyl(tert-butoxycarbonyl)-

L-phenylalaninate ((S,S)-3) (15 mg, 86%). [α]D
20 = + 20 (c 0.15, CH2Cl2). enantiomeric 

excess = 99%. 1H NMR (600 MHz, CDCl3) δ 7.35 (t, 2H, J = 7.4 Hz), 7.30 (t, 3H, J = 6.9 

Hz), 7.08 (dd, 1H, J = 8.3 and 1.7 Hz), 6.92 (d, 1H, J = 8.3 Hz), 6.84 (s, 1H), 6.25 (s, 1H), 

5.03 (d, 1H, J = 6.8 Hz), 4.87 (d, 1H, J = 7.7 Hz), 4.29 (dd, 1H, J = 11.3 and 4.1 Hz), 4.10 

(dd, 1H, J = 11.3 and 7.6 Hz), 3.93 (s, 3H), 3.88 (s, 3H), 3.82 (s, 3H), 3.81 (s, 3H), 3.35 (dd, 

1H, J = 14.0 and 5.7 Hz), 3.23 (dd, 1H, J = 13.9 and 6.4 Hz), 3.20 (dd, 1H, J = 14 and 4.3 

Hz), 2.74 (m, 1H), 2.64 (dd, 1H, J = 13.8 and 10.7 Hz), 1.42 (s, 9H). 13C{1H} NMR (150 

MHz, CDCl3) δ 191.1, 170.1, 159.7, 159.4, 155.1, 154.5, 149.7, 139.3, 137.5, 136.0, 131.1, 

129.6, 128.6, 127.6, 127.1, 123.4, 112.7, 108.7, 96.0, 80.0, 68.9, 61.6, 61.3, 56.1, 55.9, 54.4, 

48.3, 38.3, 31.8, 28.3. HRMS (EI) m/z: [M]+ Calcd for C34H39NO10 621.2574; found 

621.2572. TR = 161.1 min (chiral IC, IC-3, TFA in DW : ACN = 50 : 50, flow rate = 0.7 mL/

min).

2-Methoxy-5-(((S)-5,6,7-trimethoxy-4-oxochroman-3-yl)methyl)phenyl(tert-butoxycarbonyl)-
D-phenylalaninate ((S,R)-3).

To a dichloromethane solution (1 mL) of (S)-3-(3-hydroxy-4-methoxybenzyl)-5,6,7-

trimethoxychroman-4-one ((S)-2) (14 mg, 37 μmol) were added Boc-D-Phe-OH (12 mg, 45 

μmol), EDCI (11 mg, 57 μmol) and DMAP (1 mg, 8.2 μmol). After stirring for 17 h, the 

reaction mixture was diluted with dichloromethane and washed with water and brine, dried 

over MgSO4 and concentrated under reduced pressure. The residue was purified by flash 

column chromatography on silica gel (ethyl acetate : n-hexane = 1 : 2) to afford the 2-

methoxy-5-(((S)-5,6,7-trimethoxy-4-oxochroman-3-yl)methyl)phenyl(tert-butoxycarbonyl)-

D-phenylalaninate ((S,R)-3) (21 mg, 90%). [α]D
20 = + 29. (c 0.21, CH2Cl2). enantiomeric 

excess = 97%. 1H NMR (600 MHz, CDCl3) δ 7.35 (t, 2H, J = 7.5 Hz), 7.30 (t, 3H, J = 7 

Hz), 7.09 (dd, 1H, J = 8.3 and 1.8 Hz), 6.93 (d, 1H, J = 8.4 Hz), 6.84 (s, 1H), 6.25 (s, 1H), 

5.03 (d, 1H, J = 6.7 Hz), 4.88 (d, 1H, J = 7.9 Hz), 4.29 (dd, 1H, J = 11.3 and 4.1 Hz), 4.10 

(dd, 1H, J = 11.3 and 7.4 Hz), 3.94 (s, 3H), 3.88 (s, 3H), 3.82 (s, 3H), 3.81 (s, 3H), 3.36 (dd, 

1H, J = 13.9 and 5.6 Hz), 3.24 (dd, 1H, J = 13.9 and 6.4 Hz), 3.20 (dd, 1H, J = 14.1 and 4.3 

Hz), 2.75 (m, 1H), 2.65 (dd, 1H, J = 13.9 and 10.7 Hz), 1.43 (s, 9H). 13C{1H} NMR (150 

MHz, CDCl3) δ 191.1, 170.1, 159.7, 159.4, 155.1, 154.5, 149.7, 139.3, 137.5, 136.0, 131.1, 

129.6, 128.6, 127.6, 127.1, 123.4, 112.7, 108.7, 96.0, 80.0, 68.9, 61.6, 61.3, 56.1, 55.9, 54.4, 

48.3, 38.3, 31.8, 28.3. HRMS (EI) m/z: [M]+ Calcd for C34H39NO10 621.2574; found 

621.2574. TR = 130.0 min (chiral IC, IC-3, TFA in DW : ACN = 50 : 50, flow rate = 0.7 mL/

min).
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(S)-2-methoxy-5-((5,6,7-trimethoxychroman-3-yl)methyl)phenol ((S)-10).

[With catalytic hydrogenation] A methanol solution of (R)-3-(3-hydroxy-4-

methoxybenzyl)-5,6,7-trimethoxychroman-4-one ((R)-2) (19 mg, 50 μmol) and 10% Pd/C 

(5.3 mg) was placed under an atmosphere of hydrogen. After stirring for 1 h, the reaction 

mixture was diluted with ethyl acetate, filtered through a Celite pad, and concentrated under 

reduced pressure. The residue was purified by flash column chromatography on silica gel 

(ethyl acetate : n-hexane = 1 : 2) to afford the (S)-2-methoxy-5-((5,6,7-

trimethoxychroman-3-yl)methyl)phenol ((S)-10) (14 mg, 78%). [α]D
20 = + 28 (c 0.14, 

CH2Cl2). enantiomeric excess = 71%. 1H NMR (600 MHz, CDCl3) δ 6.78 (q, 2H, J = 2.7 

Hz), 6.66 (q, 1H, J = 3.4 Hz), 6.18 (s, 1H), 5.58 (d, 1H, J = 2.2 Hz), 4.08 (m, 1H), 3.88 (s, 

3H), 3.85 (s, 3H), 3.79 (s, 6H), 3.72 (q, 1H, J = 6.3 Hz), 2.75 (m, 1H), 2.57 (t, 2H, J = 8.0 

Hz), 2.32 (q, 1H, J = 8.3 Hz), 2.20 (m, 1H). 13C{1H} NMR (150 MHz, CDCl3) δ 152.2, 

151.6, 150.7, 145.5, 145.1, 135.8, 132.7, 120.4, 115.1, 110.6, 107.3, 95.9, 69.7, 61.0, 60.6, 

56.0, 55.9, 37.6, 33.6, 25.5. [With Et3SiH] To a tetrahydrofuran solution of trifluoroacetic 

acid (0.16 mL) and triethylsilane (32 μL, 0.2 mmol) was added anhydrous tetrahydrofuran 

(0.55 mL) solution of (3R,4R)-3-(3-hydroxy-4-methoxybenzyl)-5,6,7-trimethoxychroman-4-

ol ((3R,4R)-9a) (16 mg, 43 μmol) dropwise over 20 min. After stirring for 1 h at 40 °C, the 

reaction mixture was diluted with ethyl acetate and the organic phase was washed with water 

and NaHCO3 and dried over MgSO4. The solvent was removed under reduced pressure and 

purified by flash column chromatography on silica gel (ethyl acetate : n-hexane = 1 : 4) to 

afford the (S)-2-methoxy-5-((5,6,7-trimethoxychroman-3-yl)methyl)phenol ((S)-10) (7.8 

mg, 50%). [α]D
20= + 55 (c 0.055, CH2Cl2). enantiomeric excess = 99%. 1H NMR (600 

MHz, CDCl3) δ 6.79 (d, 1H, J = 4.1 Hz), 6.78 (d, 1H, J =1.9 Hz) 6.67 (dd, 1H, J = 8.2 and 2 

Hz), 6.18 (s, 1H), 5.59 (s, 1H), 4.08 (qd, 1H, J = 10.6 and 1.6 Hz), 3.88 (s, 3H), 3.85 (s, 3H), 

3.80 (s, 6H), 3.74 (dd, 1H, J = 10.5 and 8.3 Hz), 2.75 (ddd, 1H, J = 16.4, 5.5 and 1.3 Hz), 

2.61 (sep, 2H, J = 7.3 Hz), 2.32 (dd, 1H, J = 16.4 and 8.3 Hz), 2.23 (m, 1H). 13C{1H} NMR 

(150 MHz, CDCl3) δ 152.3, 151.8, 150.8, 145.7, 145.2, 135.9, 132.9, 120.6, 115.3, 110.8, 

107.4, 96.1, 69.8, 61.2, 60.7, 56.1, 55.9, 37.7, 33.8, 25.6. HRMS (EI) m/z: [M]+ Calcd for 

C20H24O6 360.1573; found 360.1576. TR = 5.5 min (chiral AD-3, n-hexane : EtOH = 60 : 

40, flow rate = 1.0 mL/min).

(R)-2-methoxy-5-((5,6,7-trimethoxychroman-3-yl)methyl)phenol ((R)-10).

[With catalytic hydrogenation] A solution of (S)-3-(3-hydroxy-4-methoxybenzyl)-5,6,7-

trimethoxychroman-4-one ((S)-2) (20 mg, 0.052 mmol) and 10% Pd/C (5.6 mg) in methanol 

was placed under an atmosphere of hydrogen. After stirring for 1 h, the reaction mixture was 

diluted with ethyl acetate, filtered through a Celite pad, and concentrated under reduced 

pressure. The residue was purified by flash column chromatography on silica gel (ethyl 

acetate : n-hexane = 1 : 2) to afford the (R)-2-methoxy-5-((5,6,7-trimethoxychroman-3-

yl)methyl)phenol ((R)-10) (15 mg, 78.4%). [α]D
20 = – 34 (c 0.15, CH2Cl2). enantiomeric 

excess = 78%. 1H NMR (600 MHz, CDCl3) δ 6.78 (q, 2H, J = 2.7 Hz), 6.67 (d, 1H, J = 2.0 

Hz), 6.18 (s, 2H), 5.60 (s, 1H), 4.08 (m, 1H), 3.87 (s, 3H), 3.85 (s, 3H), 3.79 (s, 6H), 3.72 (q, 

1H, J = 6.3 Hz), 2.75 (m, 1H), 2.57 (t, 1H, J = 8.0 Hz), 2.32 (q, 1H, J = 8.3 Hz), 2.20 (m, 

1H). 13C{1H} NMR (150 MHz, CDCl3) δ 152.2, 151.6, 150.7, 145.5, 145.1, 135.8, 132.7, 

120.4, 115.1, 110.6, 107.3, 95.9, 69.6, 61.0, 60.6, 56.0, 55.9, 37.6, 33.6, 25.5. [With Et3SiH] 
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To a 40 °C mixture of trifluoroacetic acid (0.15 mL) and triethylsilane (32 μL, 0.2 mmol) 

was added anhydrous tetrahydrofuran (0.5 mL) solution of (3S,4S)-3-(3-hydroxy-4-

methoxybenzyl)-5,6,7-trimethoxychroman-4-ol ((3S,4S)-9a) (15 mg, 40 μmol) dropwise 

over 20 min. After stirring for 1 h, the reaction mixture was diluted with ethyl acetate and 

the organic phase was washed with water and NaHCO3 and dried over MgSO4. The solvent 

was removed under reduced pressure and purified by flash column chromatography on silica 

gel (ethyl acetate : n-hexane = 1 : 4) to afford the (R)-2-methoxy-5-((5,6,7-

trimethoxychroman-3-yl)methyl)phenol ((R)-10) (6.2 mg, 43%). [α]D
20= – 32 (c 0.062, 

CH2Cl2). enantiomeric excess = 98%. 1H NMR (600 MHz, CDCl3) δ 6.79 (d, 1H, J = 4.4 

Hz), 6.78 (d, 1H, J =1.6 Hz) 6.67 (dd, 1H, J = 8.2 and 2 Hz), 6.18 (s, 1H), 5.60 (s, 1H), 4.09 

(qd, 1H, J = 10.6 and 1.6 Hz), 3.88 (s, 3H), 3.85 (s, 3H), 3.79 (s, 6H), 3.72 (dd, 1H, J = 10.4 

and 8.3 Hz), 2.77 (ddd, 1H, J = 16.5, 5.5 and 1.3 Hz), 2.61 (sep, 2H, J = 7.3 Hz), 2.34 (dd, 

1H, J = 16.5 and 8.4 Hz), 2.22 (m, 1H). 13C{1H} NMR (150 MHz, CDCl3) δ 152.3, 151.8, 

150.8, 145.7, 145.2, 135.9, 132.9, 120.6, 115.3, 110.8, 107.4, 96.1, 69.8, 61.2, 60.7, 56.1, 

55.9, 37.7, 33.8, 25.6.. HRMS (EI) m/z: [M]+ Calcd for C20H24O6 360.1573; found 

360.1572. TR = 7.6 min (chiral AD-3, n-hexane : EtOH = 60 : 40, flow rate = 1.0 mL/min).

Racemic 2-methoxy-5-((5,6,7-trimethoxychroman-3-yl)methyl)phenol (rac-10).

Racemic 3-benzyl-chromane was prepared by catalytic hydrogenation of 3-benzylidene-

chroman-4-one using hydrogen and Pd/C. Particularly, the anhydrous methanol solution of 

(E)-3-(3-hydroxy-4-methoxybenzylidene)-5,6,7-trimethoxychroman-4-one (22 mg, 59 μmol) 

and 10% Pd/C (6 mg) was placed under an atmosphere of hydrogen. After stirring for 24 h, 

the reaction mixture was diluted with ethyl acetate, filtered through a Celite pad and 

concentrated under reduced pressure. The residue was purified by flash column 

chromatography on silica gel (ethyl acetate : n-hexane = 1 : 2) to afford the rac-10 (19 mg, 

88%).

(R)-7-(benzyloxy)-3-(3-(benzyloxy)-4-methoxybenzyl)-5,6-dimethoxychroman-4-one ((R)-11).

To a dichloromethane (3 mL) solution of (3R,4R)-9d (11mg, 20 μmol), 

tetrapropylammonium perruthenate (4 mg, 10 μmol), molecular sieves (4 Å, 8 mg) and N-

methylmorpholine N-oxide (8 mg, 70 μmol) were added. After stirring for 1 h at ambient 

temperature. the reaction mixture was filtered through a Celite pad with dichloromethane as 

eluent, and concentrated under reduced pressure. The residue was purified by flash column 

chromatography on silica gel (ethyl acetate : n-hexane = 1 : 3) to afford the (R)-11 (10 mg, 

94%). [α]D
20 = – 18 (c 0.056, CH2Cl2). 1H NMR (600 MHz, CDCl3) δ 7.44 (d, 4H, J = 7.3 

Hz), 7.42 (t, 2H, J = 7.3 Hz), 7.37 (t, 3H, J = 7.3 Hz), 7.30 (t, 1H, J = 7.3 Hz), 6.84 (d, 1H, J 
= 7.9 Hz), 6.77 (d, 2H, J = 8.2 Hz), 6.30 (s, 1H), 5.14 (s, 4H), 4.17 (dd, 1H, J = 11.3 and 4.1 

Hz), 3.98 (dd, 1H, J = 11.3 and 7.6 Hz), 3.94 (s, 3H), 3.87 (s, 3H), 3.83 (s, 3H), 3.14 (dd, 

1H, J = 13.8 and 4.1 Hz), 2.68 (m, 1H), 2.60 (dd, 1H, J = 13.8 and 10.7 Hz). 13C{1H} NMR 

(150 MHz, CDCl3) δ 191.4, 159.6, 158.4, 154.6, 148.5, 148.1, 137.8, 137.1, 135.8, 130.9, 

128.8, 128.5, 128.3, 127.9, 127.5, 127.3, 121.9, 115.3, 112.0, 108.9, 97.3, 71.1, 70.7, 68.9, 

61.7, 61.4, 56.1, 48.4, 32.3. HRMS (EI) m/z: [M]+ Calcd for C33H32O7 540.2148; found 

540.2153. TR = 19.1 min (chiral AD-3, n-hexane : EtOH = 60 : 40, flow rate = 1.0 mL/min).
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(S)-7-(benzyloxy)-3-(3-(benzyloxy)-4-methoxybenzyl)-5,6-dimethoxychroman-4-one ((S)-11).

To a dichloromethane (3 mL) solution of (3S,4S)-9d (15 mg, 7.6 μmol), 

tetrapropylammonium perruthenate (5 mg, 14 μmol), molecular sieves (4 Å, 8 mg) and N-

methylmorpholine N-oxide (10 mg, 90 μmol) were added. After stirring for 1 h at ambient 

temperature. The reaction mixture was filtered through a Celite pad with dichloromethane as 

eluent, and concentrated under reduced pressure. The residue was purified by flash column 

chromatography on silica gel (ethyl acetate : n-hexane = 1 : 3) to afford the (S)-7-

(benzyloxy)-3-(3-(benzyloxy)-4-methoxybenzyl)-5,6-dimethoxychroman-4-one ((S)-11) (11 

mg, 72%). [α]D
20 = + 20 (c 0.050, CH2Cl2). enantiomeric excess = 94%. 1H NMR (600 

MHz, CDCl3) δ 7.44 (d, 4H, J = 7.4 Hz), 7.42 (t, 2H, J = 7.3 Hz), 7.37 (t, 3H, J = 7.3 Hz), 

7.30 (t, 1H, J = 7.3 Hz), 6.84 (d, 1H, J = 7.9 Hz), 6.77 (d, 2H, J = 9.1 Hz), 6.29 (s, 1H), 5.14 

(s, 4H), 4.15 (dd, 1H, J = 11.3 and 4.0 Hz), 3.98 (dd, 1H, J = 11.3 and 4 Hz), 3.94 (s, 3H), 

3.87 (s, 3H), 3.83 (s, 3H), 3.14 (dd, 1H, J = 13.8 and 4.0 Hz), 2.68 (m, 1H), 2.60 (dd, 1H, J = 

13.7 and 10.9 Hz). 13C{1H} NMR (150 MHz, CDCl3) δ 191.4, 159.6, 158.4, 154.6, 148.5, 

148.1, 137.8, 137.1, 135.8, 130.9, 128.8, 128.5, 128.3, 127.9, 127.5, 127.3, 121.9, 115.3, 

112.0, 108.9, 97.3, 71.1, 70.7, 68.9, 61.7, 61.4, 56.1, 48.4, 32.3. HRMS (EI) m/z: [M]+ 

Calcd for C33H32O7 540.2148; found 540.2153. TR = 10.8 min (chiral AD-3, ACN : MeOH 

= 50 : 50, flow rate = 0.5 mL/min).

(R)-Cremastranone ((R)-1).

To a dichloromethane (2 mL) solution of (R)-7-(benzyloxy)-3-(3-(benzyloxy)-4-

methoxybenzyl)-5,6-dimethoxychroman-4-one ((R)-11) (8.5 mg, 13 μmol) was added boron 

trichloride (70 μL, 0.07 mmol, 1 M CH2Cl2) at −20 °C. After stirring for 10 min, the 

reaction mixture was diluted with dichloromethane and washed with NaHCO3 and water, 

dried over MgSO4, and concentrated under reduced pressure. The residue was purified by 

flash column chromatography on silica gel (ethyl acetate : n-hexane = 1 : 3) to afford the 

(R)-Cremastranone ((R)-1) (4.5 mg, 99%). [α]D
20 = – 29 (c 0.034, MeOH). enantiomeric 

excess = 93%. 1H NMR (600 MHz, CD3OD) δ 6.86 (d, 1H, J = 8.2 Hz), 6.71 (d, 1H, J = 1.9 

Hz), 6.68 (d, 1H, J = 8.2 Hz), 5.92 (s, 1H), 4.24 (dd, 1H, J = 11.4 and 4.3 Hz), 4.08 (dd, 1H, 

J = 11.3 and 7.4 Hz), 3.83 (s, 3H), 3.78 (s, 3H), 3.09 (dd, 1H, J = 13.9 and 4.5 Hz), 2.83 (m, 

1H), 2.64 (dd, 1H, J = 13.8 and 10.3 Hz). 13C{1H} NMR (150 MHz, CD3OD) δ 198.7, 

159.4, 158.7, 155.5, 146.5, 146.3, 130.9, 129.0, 120.0, 115.6, 111.5, 101.6, 94.4, 68.9, 59.6, 

55.0, 46.6, 31.7. HRMS (EI) m/z: [M]+ Calcd for C18H18O7 346.1053; found 346.1057. TR 

= 11.8 min (chiral AD-3, ACN : MeOH = 50 : 50, flow rate = 0.5 mL/min).

(S)-Cremastranone ((S)-1).

To a dichloromethane (2 mL) solution of (S)-7-(benzyloxy)-3-(3-(benzyloxy)-4-

methoxybenzyl)-5,6-dimethoxychroman-4-one ((S)-11) (8.5 mg, 13 μmol) was added boron 

trichloride (70 μL, 0.07 mmol, 1 M CH2Cl2) at – 20 °C. After stirring for 10 min, the 

reaction mixture was diluted with dichloromethane and washed with NaHCO3 and water, 

dried over MgSO4, and concentrated under reduced pressure. The residue was purified by 

flash column chromatography on silica gel (ethyl acetate : n-hexane = 1 : 3) to afford the 

(S)-Cremastranone ((S)-1) (4.5 mg, 99%). [α]D
20 = + 18 (c 0.06, CH3OH). enantiomeric 

excess = 80%. 1H NMR (600 MHz, CD3OD) δ 6.85 (d, 1H, J = 8.2 Hz), 6.70 (s, 1H), 6.66 
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(d, 1H, J = 8.2 Hz), 5.90 (s, 1H), 4.23 (qd, 1H, J = 11.4, 4.3 and 2 Hz), 4.06 (m, 1H), 3.82 (s, 

3H), 3.77 (s, 3H), 3.07 (dd, 1H, J = 13.9 and 4.5 Hz), 2.81 (m, 1H), 2.63 (dd, 1H, J = 13.7 

and 10.8 Hz). 13C{1H} NMR (150 MHz, CD3OD) δ 198.7, 159.3, 158.7, 155.5, 146.5, 

146.3, 130.9, 129.0, 120.0, 115.6, 111.5, 101.6, 94.4, 68.9, 59.6, 55.0, 46.6, 31.7. HRMS 

(EI) m/z: [M]+ Calcd for C18H18O7 346.1053; found 346.1058. TR = 8.4 min (chiral AD-3, 

ACN : MeOH = 50 : 50, flow rate = 0.5 mL/min).

Biological assay materials.

Human retinal microvascular endothelial cells (HRECs; Cell Systems, Seattle, WA) and 

human umbilical vein endothelial cells (HUVECs; Lonza, Walkersville, MD), were used 

between passage 5 and 8. Endothelial Growth Medium (EGM-2) was made by adding an 

EGM-2 “Bullet Kit” (Cat no. CC-4147) to Endothelial Basal Medium (EBM) (Cat no. 

CC-3156) (Lonza). 92–1 uveal melanoma cells (a kind gift of Dr. Martine Jager, University 

of Leiden) were grown in RPMI medium containing 10% FBS and 1% penicillin-

streptomycin (pen-strep). Y-79 retinoblastoma cells (a kind gift of Dr. Brenda L. Gallie, 

Hospital for Sick Children) were grown in RB medium (IMDM + 10% FBS + 55 μM β-

mercaptoethanol + 10 μg/mL insulin + 1% pen-strep). AlamarBlue (product code BUF012B) 

was from AbD Serotec (Raleigh, NC), while Matrigel matrix basement membrane (Cat no.

354234) was from Corning (Corning, NY).

Cell proliferation assay.

These compounds’ ability to affect cell proliferation was assessed by an alamarBlue 

fluorescence assay as previously described.19 Four cell types were used: HRECs, HUVECs, 

92–1, and Y79. Briefly, 2,500 cells in 100 μL growth medium were seeded in 96-well clear 

bottom black plates and grown for 24 hours at 37°C, 5% CO2 Each test compound was then 

added (concentration range: 0.1 nM to 500 μM) followed by 44 hours’ incubation at 37°C, 

5% CO2 (DMSO final concentration = 1%). Then, alamarBlue reagent (11.1 μL) was added 

and after 4 hours, fluorescence was read on a Synergy H1 plate reader (Biotek, Winooski, 

VT) with excitation and emission wavelengths of 560 nm and 590 nm, respectively. 

GraphPad Prism software (v. 7.0) was used for analysis, fitting data to three-parameter 

log(dose) vs. response curves. Compounds that reduced cell number by ≥50% at the highest 

concentration tested (relative to DMSO control) were reported as having a GI50 < 100 μM.

In vitro migration assay.

HREC migration was monitored as described before,14,15 with modifications. Briefly, 

HRECs were grown until confluency in 96‐well plates. A scratch was made across the center 

of each well with a sterile 10‐μL micropipette tip, and fresh complete medium containing 

DMSO or indicated concentrations of compounds were added to the wells (DMSO final 

concentration = 1%). Wells were imaged at 4x using an IncuCyte ZOOM system (Essen 

BioScience, Ann Arbor, MI) with images taken every 2 hours to monitor cell migration 

across the scratch. After 8 hours, the cells that migrated into the scratch were counted using 

the Multipoint tool in ImageJ.
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In vitro tube formation assay.

A Matrigel tube formation assay was used to test the ability of HRECs to form tube-like 

structures when treated with different concentrations of compounds according to our 

standard protocol.19 Briefly, 15,000 cells in 100 μL EGM-2 medium were grown at 37°C, 

5% CO2 in the absence (DMSO treated) and presence of different concentrations of 

compounds in 96-well clear plates coated with 50 μL of Matrigel basement membrane 

(DMSO final concentration = 1%). After 8 hours, images were recorded using an EVOS FL 

microscope and tubule length was measured using Angiogenesis Analyzer macros in ImageJ 

(http://image.bio.methods.free.fr/ImageJ/?Angiogenesis-Analyzer-for-ImageJ).

Statistical analyses.

Data from tube formation and migration experiments were analyzed by one-way ANOVA 

with Dunnett’s post hoc tests for comparisons between compound treatments and DMSO 

control. All analyses were performed using GraphPad Prism software (v.7.0). A p value of 

<0.05 was considered statistically significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Anti-angiogenic activity of natural and synthetic homoisoflavanones. HREC, target human 

retinal microvascular endothelial cells; HUVEC, human umbilical vein endothelial cells; 92–

1, uveal melanoma cell line; and Y79, retinoblastoma cell line, used as surrogates for non-

target ocular cell types. asee references 12 and 14a, bND: not determined
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Figure 2. 
Previous approaches and our plan for asymmetric synthesis of homoisoflavanones
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Figure 3. 
Experimental and calculated ECD spectra of (3R,4R)-9a and (3S,4S)-9a
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Figure 4. 
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Matched/mismatched effects on a pair of homoisoflavanones and catalyst (S,S)-4 in 

asymmetric transfer hydrogenation. (a) (R)-2; (b) (S)-2. a The concentration of each 

compound was determined by chiral HPLC analysis using a Chiralpak AD-3.
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Figure 5. 
Effects of potent enantiomers on HREC migration. Inhibition of HREC migration in a 

scratch-wound assay. Top, images of control and highest dose treatments, with time zero 

scratch position marked. Scale bar = 200 μm. Bottom, quantification of migration. Dose 

ranges chosen based on GI50 data. Mean±SEM, n=4–6; *p<0.05, ***p<0.001, ANOVA with 

Dunnett’s post hoc tests. Representative data from three independent experiments.
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Figure 6. 
Effects of potent enantiomers on HREC tube formation. Inhibition of HREC tube formation 

in a Matrigel tubule-formation assay Top, images of control and highest dose treatments. 

Scale bar = 200 μm. Bottom, quantification of tubule length. Dose ranges chosen based on 

GI50 data. Mean±SEM, n=6; *p<0.05, **p<0.01, ***p<0.001, ANOVA with Dunnett’s post 

hoc tests. Representative data from three independent experiments ((R)-1 and (S)-1 were 

assessed in a separate experiment but combined here for ease of visualization).
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Scheme 1. 
Enantioselective synthesis of cremastranone (1) and its analog (2) via asymmetric transfer 

hydrogenation using Noyori’s ruthenium catalysts 4a and 4b.
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Scheme 2. 
Preparation of racemic homoisoflavanones for the synthesis of 3-benzyl-chroman-4-ol.

Reagents and conditions: (a) isovanillin or 3-benzyloxy-4-methoxybenzaldehyde, p-TsOH, 

benzene, reflux, 70% for 2; 76% for 6 and 8; (b) H2, Pd/C, MeOH, rt, 98% for 2; 97% for 6; 

56% (97% BORSM) for 8; (c) benzyl bromide, K2CO3, acetone, 99% for 7 and 72% for 8.
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Scheme 3. 
Synthesis of chiral 3-benzyl-chroman-4-one and 3-benzyl-chromane derivatives.

Reagents and conditions: (a) TPAP, NMO, MS 4 Å, CH2Cl2, 66%; (b) H2, Pd/C, EtOAc, 

88%; (c) Boc-L-Phe-OH or Boc-D-Phe-OH, EDCI, DMAP, CH2Cl2, 80% for (R,S)-3 and 

73% for (R,R)-3; (d) Et3SiH, TFA, THF, 40 °C, 51%.

Heo et al. Page 35

J Org Chem. Author manuscript; available in PMC 2020 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 4. 
Asymmetric synthesis of cremastranone.

Reagents and conditions: (a) TPAP, NMO, MS 4 Å, CH2Cl2, 1 h, 94%; (b) BCl3, CH2Cl2, 

−20 °C, 10 min, 99%.
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Table 1.

C4-Carbonyl reduction of homoisoflavanones 2 and 7.

entry substrate reducing agent temp (°C) yield (%)
cis : trans

a

1 2 NaBH4 0 68 3.3 : 1

2 7 NaBH4, CeCl3 0 85 3.5 : 1

3 7 LiAlH4 0 81 1.3 : 1

4 7 DIBAL −40 98 2.2 : 1

5 7 Super-H® 0 72 3.2 : 1

6 7 Super-H® −78 92 3.4 : 1

7 7 L-selectride 0 61 3.8 : 1

8 2 L-selectride −78 89 >20 : 1

9 7 L-selectride −78 99 >20 : 1

a
The ratio of cis- to trans-isomers was assessed by 1H NMR spectroscopy
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Table 2.

Asymmetric transfer hydrogenation of homoisoflavanone 2 using Noyori’s ruthenium catalysts.

entry catalyst
(mol%)

base (equiv.) base:HCO2H (v/v) solvent yield (%)
c cis:trans

cis ee (%)
e

1
a (R,R)-4 (10) Et3N (3.5) 1:3 EtOAc 16 (32) >20:1

ND
d

2 (R,R)-4 (10) Et3N (3.5) 1:3 EtOAc 38 (51) >20:1 98

3 (R,R)-4 (10) Et3N (3.5) 1:3 ACN NR - -

4 (R,R)-4 (10) Et3N (10) 3:1 EtOAc 45 (80) >20:1 ND

5
b (S,S)-4 (10) Et3N (10) 3:1 EtOAc 56 (92) >20:1 85

6 (R,R)-4 (20) Et3N (10) 3:1 ACN 25 (64)
ND

d ND

7 (R,R)-4 (20) DBU (10) 3:1 EtOAc 33 (35) ND 97

8 (R,R)-4 (20) DBU (10) 3:1 ACN 23 (26) ND 97

9 (R,R)-4 (30) DBU (10) 3:1 EtOAc 91 ND 97

10 (R,R)-4 (30) DBU (10) 3:1 ACN 96 >20:1 97

11
b (S,S)-4 (30) DBU (10) 3:1 ACN 92 >20:1 97

12 (R,R)-4 (10) DBU (5.0) 10:1 ACN 35 (54) 1:1 97

a
Without degassing;

b
major product is (3S,4S)-9a;

c
recovered yield based on starting material in parentheses; NR: no reaction;

d
ND: not determined;

e
the enantiomeric excess (%ee) was determined by chiral HPLC analysis using a Chiralpak AD-3.
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Table 3.

Screening conditions for carbonyl reduction of benzyl-protected homoisoflavonoids by Noyori’s chiral 

ruthenium catalysts.

entry substrate catalyst
(mol%)

base
(equiv.)

solvent yield (%) cis:trans
cis ee (%)

d

1
a 6 (R,R)-4 (10) Et3N (10) EtOAc trace - -

2 6 (R,R)-4 (30) DBU (10) ACN trace - -

3
a 7 (R,R)-4 (10) Et3N (10) EtOAc 32 >20:1 90

4 7 (R,R)-4 (10) DBU (10) ACN 55
ND

c 99

5 7 (R,R)-4 (30) DBU (10) EtOAc 73 >20:1 ND

6 7 (R,R)-4 (30) DBU (10) ACN 93 ND 97

7 7 (S,S)-4 (30) DBU (10) ACN 92 >20:1 93

8 8 (R,R)-4 (30) DBU (10) ACN 87 >20:1 98

9 8 (S,S)-4 (30) DBU (10) ACN 92 >20:1 96

a
stirred for 12 h;

b
major product is (3S,4S)-9a;

c
ND: not determined;

d
the enantiomeric excess (%ee) was determined by chiral HPLC analysis using a Chiralpak AD-3.
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Table 4.

Growth inhibitory activity (GI50, μM) of racemic and enantiopure homoisoflavanones (95% confidence 

interval shown in parentheses)

compound structure HREC HUVEC 92–1 Y79

rac-1 0.22
(0.12 – 0.39)

0.38
(0.24 – 0.59)

48
(17 – 132)

9.8
(2.1 – 45)

(R)-1 2.0
(1.0 – 3.8)

0.98
(0.30 – 3.2)

4.5
(1.6 – 12)

3.9
(1.8 – 8.5)

(S)-1 0.35
(0.087 – 1.2)

0.24
(0.16 – 0.36)

0.34
(0.15 – 0.72)

0.36
(0.14 – 0.89)

rac-2 2.0
(0.81 – 5.1)

12
(2.7 – 55)

>100 >100

(R)-2 0.44
(0.21 – 0.94)

0.55
(0.16 – 1.9)

>100 0.40
(0.013 – 1.3)

(S)-2 0.024
(0.0078 – 0.074)

0.0027
(0.00066 – 0.011)

>100 0.014
(0.012 – 0.017)

rac-3 0.055
(0.032 – 0.094)

0.75
(0.37 – 1.5)

>100 12
(5.7 – 25)

(R,S)-3 0.27
(0.088 – 0.85)

0.0039
(0.0011 – 0.013)

>100 0.030
(0.0087 – 0.11)

(S,S)-3 0.028
(0.0087 – 0.093)

0.0030
(0.00067 – 0.013)

>100 0.03
(0.011 – 0.082)

(R,R)-3 4.0
(1.3 – 13)

1.1
(0.73 – 1.6)

>100 2.5
(1.2 – 5.2)

(S,R)-3 0.16
(0.087 – 0.31)

0.16
(0.040 – 0.64)

>100 0.22
(0.044 – 1.1)

cis-9a 0.034
(0.0081 – 0.15)

1.1
(0.56 – 2.4)

>100 >100

trans-9a >100 3.9
(0.17 – 130)

>100 >100
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(3R,4R)-9a 0.72
(0.41 – 1.2)

0.35
(0.087 – 1.4)

>100 0.42
(0.091 – 1.9)

(3S,4S)-9a 0.23
(0.049 – 0.95)

0.036
(0.0067 – 0.19)

>100 0.070
(0.038 – 0.13)

rac-10 0.0015
(0.00056 – 0.0041)

0.0062
(0.00015 – 0.30)

28
(3.1 – 246)

17
(11 – 27)

(S)-10 2.0
(0.52 – 7.3)

1.7
(0.41 – 6.9)

>100 3.3
(1.0 – 11)

(R)-10 0.0065
(0.0046 – 0.0094)

0.0093
(0.0015 – 0.056)

>100 0.015
(0.0022 – 0.11)
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