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ABSTRACT 

Background: Homoisoflavonoids have been shown to have potent anti-proliferative activities in endothelial cells over other cell types and have 

demonstrated a strong antiangiogenic potential in vitro and in vivo in animal models of ocular neovascularization. Three species of Rhodocodon 

(Scilloideaea subfamily of the Asparagaceae family), endemic to Madagascar, R. cryptopodus, R. rotundus and R. cyathiformis, were 

investigated. 

Purpose: To isolate and test homoisoflavonoids for their antiangiogenic activity against human retinal microvascular endothelial cells (HRECs), 

as well as specificity against other ocular cell lines.   

Methods: Plant material was extracted at room temperature with EtOH. Compounds were isolated using flash column chromatography and were 

identified using NMR and CD spectroscopy and HRESIMS. Compounds were tested for antiproliferative effects on primary human 

microvascular retinal endothelial cells (HRECs), ARPE19 retinal pigment epithelial cells, 92-1 uveal melanoma cells, and Y79 retinoblastoma 

cells. HRECs exposed to compounds were also tested for migration and tube formation ability. 

Results: Two homoisoflavonoids, 3S-5,7-dihydroxy-(3’-hydroxy-4’-methoxybenzyl)-4-chromanone (1) and 3S-5,7-dihydroxy-(4’-hydroxy-3’-

methoxybenzyl)-4-chromanone (2), were isolated along with four bufadienolides.  Compound 1 was found to be non-specifically 

antiproliferative, with GI50 values ranging from 0.21 – 0.85 µM across the four cell types, while compound 2 showed at least 100-fold specificity 

for HRECs over the other tested cell lines.   Compound 1, with a 3S configuration, was 700 times more potent that the corresponding 3R 

enantiomer recently isolated from a Massonia species. 

Conclusion: Select homoisoflavonoids have promise as antiangiogenic agents that are not generally cytotoxic.  
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Introduction 

Abnormal formation of new blood vessels in the eye is associated with blindness in many ocular diseases such as retinopathy of prematurity 

(ROP) affecting children, proliferative diabetic retinopathy (PDR), the wet form of age-related macular degeneration (AMD) and neovascular 

glaucoma affecting working-age and older adults, respectively (Penn et al., 2008). Small molecule antiangiogenic drugs are urgently needed to 

supplement the existing available biologics, including drugs such as bevacizumab, ranibizumab, and aflibercept, which target the vascular 

endothelial growth factzzor (VEGF) (Folk and Stone, 2010).  Homoisoflavonoids, a class of compounds commonly found in the Scilloideae 

subfamily of the Asparagaceae family, have been shown previously to have potent anti-proliferative activities in endothelial cells over other cell 

types (Schwikkard et al., 2019).  Moreover, they demonstrated a strong antiangiogenic potential in vitro and in vivo in animal models of ocular 

neovascularization (Sulaiman et al., 2016).  

The genus Rhodocodon (Asparagaceae) has been the topic of much taxonomic debate and, in this work, we report on the phytochemical 

investigation into Rhodocodon cryptopodus (H. Perrier), R. rotundus (Baker) and R. cyathiformis (var. giganteus). The genus is endemic to 

Madagascar and thirteen species have been identified based on morphological, biogeographical and molecular evidence (Knirsch et al., 2015).  
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In the 1990s, Speta (Speta, 1998b) integrated the genus Rhodocodon into that of Rhadamanthus, effectively replacing the Rhodocodon genus, 

while Rhadamanthus was subsequently combined with Drimia by Manning et al., giving rise to the synonym Drimia rotunda (Manning et al., 

2003).  Hyacinthus cryptopodus (Baker) (syn. Rhodocodon cryptopodus), which had been placed in the Hyacinthoideae subfamily by Speta 

(Speta, 1998a) as the only Madagascan species in the Hyacinthus genus, was tentatively moved by Manning et al. (Manning et al., 2003) to the 

Ledebouria genus, pending further evidence, becoming Ledebouria cryptopoda (Baker) J. C. Manning and Goldblatt.  This was due to 

characteristics unique to the Ledebouria genus such as the fibres produced when the bulb scales are torn.  However, in 2006, this move was re-

evaluated by Pfosser et al.(Pfosser et al., 2006), who re-assigned L. cryptopodus to the subfamily Urgineoideae, which brought about a 

necessary transfer from the genus Ledebouria to Drimia as D. cryptopoda (Baker) Pfosser, Wetschnig & Speta.  Rhodocodon Baker has recently 

been reinstated as a genus within the Scilloideae subfamily of the Asparagaceae (sensu APG III) by Knirsch et al., (Knirsch et al., 2015) based 

on morphological, biogeographical and molecular evidence and Drimia cryptopoda was transferred to this new genus.  No medicinal use of any 

species of Rhodocodon has been reported although the crushed bulbs of R. cryptopodus are used for epilation. 

The aim of this work was to investigate the phytochemistry of the three Rhodocodon species and to evaluate the homoisoflavonoids isolated for 

their antiangiogenic activity. 

Materials and methods 

Instrumentation 

NMR spectra were recorded on a 500 MHz Bruker AVANCE NMR spectrometer in either CDCl3 or CD3OD, UV-VIS spectra were recorded on 

a Libra Biochrom spectrometer in CH3OH in a 1 cm cell, IR spectra were obtained using an Agilent (Cary 600 series) FTIR spectrometer 

(University of Surrey), ESIMS analysis was performed using an Alliance 2695 Quattro Ultra mass spectrometer, HRESIMS data were recorded 

on an Agilent 6550 iFunnel Q-TOF LC/MS with samples dissolved in CH3OH. Optical rotations were measured at room temperature in CH3OH 
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using a JASCO P-1020 polarimeter and CD spectra were measured on a Chirascan CD spectrometer using a 1 mm cell in CH3CN.  Solvents 

were reagent grade and purchased from Sigma-Aldrich. 

Plant Material 

Plant material of Rhodocodon cryptopodus (Baker), Rhodocodon rotundus (H. Perrier) and R. cyathiformis was collected by Dr Walter Knirsch 

in Madagascar. Collection permit: 215/13/MEF/SG/DGF/DCB.SAP/SCB, collected 27/12/2016 – 12/01/2017.  Acquisition numbers of the 

collected plants are R. cryptopodus: 02442, R. rotundus: 04953 and R. cyathiformis: WK3.  R. cryptopodus was collected from 

Ambatondradama, Madagascar, and purchased in the market of Antananarivo.  R. rotundus was collected from along the roadside on the way to 

Sakalalina, Madagascar and R. cyathiformis was collected near Mahajanga at the Grotte d’Anjohibe.  Voucher specimens have been retained at 

the Karl-Franzens-University, Graz, Austria. 

Extraction and isolation 

The dried bulbs of R. cryptopodus (67.5 g) were extracted with EtOH (550 mL) by shaking at room temperature for 24 hours. The EtOH extract 

(1.806 g) was obtained after solvent evaporation.  The extract was separated using gravity column chromatography over silica gel (Merck 9385) 

to yield 1 (5.4 mg), 3 (3.5 mg), 6 (6.2 mg), 7 (2.9 mg), and 10 (3.7 mg). Dried bulbs of R. rotundus (269.2 g) were extracted at room temperature 

with continuous agitation over 24 hours with EtOH (200 mL).  The resulting EtOH extract (18.1 g) was separated using a flash column 

chromatography system to yield compounds 2 (40.0 mg), 4 (7.8 mg), 5 (4.3 mg), 8 (40.7 mg) and 9 (11.4 mg).  The fresh bulbs of R. 

cyathiformis (450 g) were extracted with CH2Cl2 (1 L) by shaking at room temperature for 42 hours.  The extract (2.0 g) was separated using a 

flash column chromatography system (Biotage SP1 Flash Chromatography Purification System) to yield compounds 1 (1.0 mg) and 2 (1.1 mg). 

A detailed separation scheme of each extract can be found in the supporting information, along with spectra. 
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Compound characterisation  

Compound 2 yellow oil; [α]23

D
  +7.95 (c 0.86, MeOH); ECD (CH3CN) λ (Δε) 230 nm (-0.2) 293 nm (+2.7), 310 nm (-0.1); 1H NMR (CDCl3, 500 

MHz) and 13C NMR (CDCl3, 125 MHz) data are given in Table 1. HRESIMS m/z 315.0876 [M-H]- (calcd. for [C17H16O6 - H], m/z 315.0874). 

Compound 9 white crystals; [α]23

D
  +40.9 (c 0.44, MeOH); 1H NMR (CDCl3, 500 MHz) and 13C NMR (CDCl3, 125 MHz) data are given in Table 

3. HRESIMS m/z 643.2728 [M+Na]+ (calcd. for [C32H44O12 + Na], m/z 643.2725). 

Compound 10 white powder; 1H NMR (CDCl3, 500 MHz) and 13C NMR (CDCl3, 125 MHz) data are given in Table 2. ESIMS m/z 190.0631 

[M]+, (calcd. for [C11H10O3]+, m/z 190.0629). 

Biological assay materials 

Endothelial Growth Medium (EGM-2) was prepared by mixing the contents of an EGM-2 “Bullet Kit” (Cat. no. CC-4176) with Endothelial 

Basal Medium (EBM) (Lonza). The EGM-2 “Bullet Kit” contains hydrocortisone, human fibroblast growth factor (hFGF), VEGF, R3-insulin 

like growth factor (R3-IGF-1), ascorbic acid, human epidermal growth factor (hEGF), gentamycin and heparin along with 2% foetal bovine 

serum (FBS). Human Retinal Endothelial Cells (HRECs) and Attachment Factor were purchased from Cell Systems (Kirkland, WA, USA). 

HRECs used for cell proliferation studies were of varying passages (P6-P8) while cells used in tube formation assays were P4 and migration 

assays utilised P5. The complete medium used for culturing ARPE-19 cells (ATCC, Manassas, VA, USA) contained Ham’s-F10 growth medium 

(Thermo Scientific, Waltham, MA, USA) + 10% FBS + 1% penicillin-streptomycin (pen−strep). 92-1 uveal melanoma cells (a kind gift of Dr. 

Martine Jager, University of Leiden) were grown in RPMI medium containing 10% FBS and 1% pen−strep. Y-79 retinoblastoma cells (a kind 

gift of Dr. Brenda L. Gallie, Ontario Cancer Institute) were grown in RB medium (IMDM + 10% FBS + 55 μM β-mercaptoethanol + 10 μg/mL 

insulin + 1% pen−strep). Matrigel was from Corning (Corning, NY, USA), while alamarBlue was from AbD Serotec (Raleigh, NC, USA). 
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Cell proliferation assays 

Cells (2,500) in growth medium (100 µL) were incubated in the centre 48 wells of 96-well clear bottom black plates overnight, with the 

surrounding wells containing deionized, sterilised water (100 µL). This was followed by treatment of cells with 1 µL of different concentrations 

of each test compound. Compounds were tested in triplicate over the range of 1 mM to 1 nM (1% v/v final DMSO concentration). Treated cells 

were incubated for a further 44 hours. At the end of this incubation period, alamarBlue reagent (11.1 µL) was added and after 4 hours of 

incubation, fluorescence readings were taken with excitation and emission wavelengths of 560 nm and 590 nm respectively. Data were analysed 

and dose response curves generated using GraphPad Prism software (v. 7.0). 

Migration assays 

The scratch wound migration assay was performed as previously described (Basavarajappa et al., 2015) with HRECs grown in EGM-2 to 

confluency in a 12 well plate.  A scratch was introduced with a sterile 10 µL pipette tip and medium was replaced with EGM-2 containing the 

indicated concentrations of compound with 1% DMSO/well and wells were imaged by brightfield microscopy to establish scratch width at t = 0.  

Cells that migrated into the scratch after 11 hours were manually counted and normalized to control.  Statistical analysis using one-way ANOVA 

with Dunnett’s post hoc tests to compare treatment with DMSO control was completed using GraphPad Prism. P-values < 0.05 were considered 

significant. 

Tube formation assays 

The Matrigel based tube formation assay was performed as previously described (Basavarajappa et al., 2015). Briefly, 50 µL Matrigel was 

allowed to solidify in a 96 well black, clear bottom plate at 37°C for 20 minutes.  HRECs were added to the solid Matrigel at 15,000 cells/well in 

100 µL EGM-2 and dosed with appropriate concentrations of compound with 1 µL DMSO/well.  Tube formation was observed every 2 hours by 

brightfield microscopy and images were taken after 8 hours of tube formation.  Six images per treatment were analysed with 
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AngiogenesisAnalyzer plugin for ImageJ (http://image.bio.methods.free.fr/ImageJ/?Angiogenesis-Analyzer-for-ImageJ), and total tubule length 

for treated cells was normalised to DMSO.  Statistical analysis using one-way ANOVA with Dunnett’s post hoc tests to compare treatment with 

DMSO control data was completed using GraphPad Prism. 

Results  

Isolation and characterization of compounds from R. cryptopodus 

The EtOH extract of the bulbs of R. cryptopodus yielded a 3S 3-benzyl homoisoflavonoid, identified as 3S-(5,7-dihydroxy-(3’-hydroxy-4’-

methoxybenzyl)-4-chromanone (1), previously reported from Rhodocodon campanulatus but not tested previously for angiogenic activity 

(Schwikkard et al., 2017), the cinnamic acid derivative, p-hydroxyphenylethyl p-coumarate (3), previously reported from Dendrobium falconeri 

(Orchidaceae), a species of orchid native to Asia, which showed a marginal inhibitory effect (EC50 of 352.1 µM) against Herpes simplex virus 

type 1 (HSV-1) (Sritularak and Likhitwitayawuid, 2009), two known bufadienolide glycosides, deglucohellebrin (6) and hellebrigenin (7), both 

of which have been isolated from the Helleborous genus (Ranunculaceae) (Watanabe et al., 2003) and the previously unreported  coumarin (10).  

Compound 6 has been tested previously against oral human squamous carcinoma cells (HSC-2) and human melanoma cells (A 375) and was 

found to have a potent cytotoxic effect against both (GI50 = 2.8 nM and 6.3 nM respectively) (Watanabe et al., 2003).  It was also found to have 

an inotropic effect on cat heart in situ and isolated guinea pig and rat hearts, while compound 7 is known to be cytotoxic against oral human 

squamous carcinoma cells (HSC-2) (GI50 = 2.9 nM) and human melanoma cells (A 375) (GI50 = 8.6 nM) (Watanabe et al., 2003).  The structures 

of the compounds were determined using NMR spectroscopy and structures of known compounds were confirmed by comparison against 

literature values as referenced above. Complete NMR assignments for bufadienolides 6 – 9 (which are not available in the literature) are given 

(Table 3). 
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Compound 2, 3S-5,7-dihydroxy-(4’-hydroxy-3’-methoxybenzyl)-4-chromanone, gave the same molecular formula (C17H16O6), ESI-MS peak at 

m/z 315.0876 ([M-H]-) and NMR spectrum (Table 1) as a homoisoflavonoid isolated previously from Drimia delagoensis (Koorbanally et al., 

2005).  However, an ECD study showed Cotton effects of +2.8 at 290 nm and −0.2 at 230 nm indicating the unusual 3S configuration (Moodley 

et al., 2006). This agrees with the reported configurations of other 3-benzyl homoisoflavonoids isolated from Rhodocodon which have also been 

found to have the 3S configuration (Schwikkard et al., 2017).  Hence compound 2 is the S-enantiomer of the previously reported 3R isomer. 

Compound 9, 6α-acetoxy-3β,8β,14β-trihydroxy-10,13-dimethylbufa-4,20,22-trienolide 3-O-β-D-glucopyranoside, was found to be the 6α-

acetoxy-analogue of scilliroside (6β-acetoxy-3β,8β,14β-trihydroxy-10,13-dimethylbufa-4,20,22-trienolide 3-O-β-D-glucopyranoside), a toxic 

compound from Urginea maritima, which has been used as a rodenticide (Bahri et al., 2000).  ESI-MS analysis gave a [M+Na]+ peak at m/z 

643.2728, indicating a molecular formula of C32H44O12  for the compound.  Resonances attributable to carbons and protons of the bufadienolide 

lactone ring were present (Table 3) and correlations were seen between the H-17 resonance (δH 2.56, dd, J=9.2, 6.5 Hz) and the oxygenated C-14 

resonance (δC 86.5) and the C-18 methyl carbon resonance (δC 19.8).  The 3H-19 (δC 1.36) resonance showed correlations in the HMBC 

spectrum with the C-10 (δC 38.1), C-9 (δC 52.2) and alkene C-5 (δC 143.2) resonances.  The C-10 resonance showed correlations with the H-4 

alkene (δH 5.94, br s) and H-6 oxymethine resonances (δH 5.47, dd, J=8.6, 2.6 Hz).  Coupling was seen in the COSY spectrum between the H-4 

and H-3 (δH 4.26, bs) resonances.  An acetate group was placed at C-6 due to a correlation seen between an acetate group carbonyl carbon 

resonance (δC 171.7) and the H-6 resonance.  The orientation of H-6 was established as β as correlations were seen in the NOESY spectrum 

between the H-H-4/H-6, H-4/3H-19 and H-6/3H-19 resonances.  The H-3 resonance showed a correlation with the acetate methyl group proton 

resonance.  The specific rotation of compound 9 was found to be +40.9, while the literature value for scilliroside has been reported as -59.4 

(Bahri et al., 2000).  

LRMS of compound 10 indicated a molecular ion at m/z=190.2 corresponding to a molecular formula of C11H10O3 and seven degrees of 

unsaturation.  The NMR spectra indicated the presence of a substituted coumarin with the C-2 lactone carbonyl resonance occurring at δC 167.5 
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and the H-3 and H-4 resonances appearing as a pair of doublets at δH 5.64 and δH 7.41 (both d, J=7.8 Hz) respectively.  The corresponding C-4 

resonance (δC 143.7) showed a correlation with the H-5 resonance at δH 6.69 (d, J=8.0 Hz), which showed coupling in the COSY spectrum with 

the H-6 (δH 6.54, dd, J= 8.0, 2.1 Hz) and H-8 (δH 6.66, d, J=2.1 Hz) proton resonances. Both the H-6 and H-8 resonances showed correlations in 

the HMBC spectrum with the C-9 methylene carbon resonance (δC 39.9) and the corresponding 2H-9 triplet (δH 2.68, t, J=7.4 Hz) showed 

coupling with the 2H-10 oxymethylene proton resonance (δH 3.69, t, J=7.4 Hz), indicating a hydroxy group at C-10, in accordance with the 

molecular formula. Although 7-methylated and 7-prenylated coumarins and their derivatives are known, this is the first example of a 7-

hydroxyethyl coumarin. It could possibly arise from the oxidative degradation of a prenyl group (El-Sharkawy and Mahmoud, 2016; Tantray et 

al., 2008; Tesso et al., 2005; Yang et al., 2013). Coumarins have not been reported previously from the Hyacinthaceae (Mulholland et al., 2013). 

Isolation and characterization of compounds from R. rotundus and R. cyathiformis 

The EtOH extract of the bulbs of R. rotundus yielded five compounds, two of which, a rare 3S-type 3-benzyl homoisoflavonoid (2) and a 

bufadienolide glycoside (9), have not been reported previously (Fig. 1).  Two known cinnamic acid derivatives, p-hydroxyphenethyl-trans-

ferulate (4), first extracted from Heracleum lanatum (Nakata et al., 1982) and 2-hydroxyethyl-trans-ferulate (ariscucurbin A) (5), previously 

isolated from Aristolochia cucurbitifolia  (Wu et al., 1999), and 3β,14β-dihydroxy-19-oxo-5β-bufa-20,22-dienolide 3-O-β-D-glucopyranoside 

(8), reported once previously from the related Madagascan Rhodocodon campanulatus (Schwikkard et al., 2017) were isolated.  Compound 4 is a 

known free-radical scavenger (Hirano et al., 1997) which has also been shown to have an affinity toward serotonin (5-HT7) receptors 

(Kaewamatawong et al., 2007).  

The CH2Cl2 extract of R. cyathiformis yielded compounds 1 and 2, also isolated in this work from R. cryptopodus and R. rotundus respectively. 

Antiproliferative effects of homoisoflavonoids 
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Homoisoflavonoids are known to inhibit angiogenesis with some selectivity for blocking the proliferation of endothelial cells over other ocular 

cell types (Basavarajappa et al., 2015; Lee et al., 2014).  Thus, they have appeal as a basis for new treatments for neovascular eye diseases such 

as wet age-related macular degeneration (Sulaiman et al., 2014).  Because of this, compounds 1 and 2 were tested for their anti-proliferative 

activities against human retinal endothelial cells (HRECs), giving excellent GI50 results of 0.13 µM and 0.49 µM respectively in this assay (Fig. 

2).  In comparison, the R-enantiomer of compound 1, recently isolated from Massonia bifolia and tested for anti-proliferative activity against 

HRECs gave a GI50 of 93.2 µM (R), >700-fold less potent than S-enantiomer 1 (Schwikkard et al., 2018).  

Although compounds 1 and 2 are very similar in structure and gave similar GI50 results against the endothelial cell line, HRECs, the compounds 

showed very different activities against other cell lines. Compounds were tested for their specificity against human retinal pigmented epithelial 

cells (ARPE-19) as well as retinoblastoma (Y-79) and uveal melanoma (92-1) cell lines (Fig. 2).  Compound 1 was found to be non-specific, 

with GI50 values ranging from 0.21 – 0.85 µM across the four cell types, while compound 2 showed at least 100-fold specificity for HRECs over 

the other tested cell lines (Fig. 2). 

Antiangiogenic effects of homoisoflavonoids 

Both compounds 1 and 2 were tested for inhibition of key in vitro angiogenic properties of HRECs, migration and tubule formation, and showed 

dose-dependent blockade of both these properties (Figs. 3 and 4).  

Discussion 

The limitations of existing therapies for neovascular eye diseases like wet age-related macular degeneration provide a compelling need for novel 

pharmacological approaches. There is a growing body of evidence showing that homoisoflavonoids have antiangiogenic activity relevant to 
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these diseases, in some cases with limited effects on non-target cells. Thus, in this study we sought novel homoisoflavonoids from a plant genus 

known to produce this class of compounds, and tested isolated compounds for antiangiogenic activity. 

Despite the similarity in structure of compounds 1 and 2, compound 1 was non-specific for antiproliferative effects on endothelial cells, while 

compound 2 was selective for HRECs. However, both compounds blocked migration and tubule formation of HRECs; these assays provide a 

good in vitro model of antiangiogenic activity. Taken together, these results suggest that compound 2 shows promise for the development of 

future small molecule treatments for ocular neovascularization, due to its specificity and its excellent activity against HRECs. 
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Table 1. NMR data for compounds 1 and 2 (500 MHz, CDCl3, J in Hz). 

Table 2. NMR Data for Compound 10 (500 MHz, CDCl3, J in Hz). 

Table 3. NMR Data for Compounds 6-9 (500 MHz, CDCl3, J in Hz). 

Table 4. NMR data for compounds 1 and 2 (500 MHz, CDCl3, J in Hz) 

 1
 

2 

No. δC δH δC δH 

2 69.3 (α) 4.11 (dd, 11.4, 7.4) 69.1 (α) 4.10 (dd, 

11.5,7.0) 

(β) 4.27 (dd, 11.4, 4.3)  (β) 4.26 (dd, 

11.5,4.2) 

3 46.9 2.83 (m) 46.8 2.80 (m) 

4 198.1 - 198.3 - 

4a 103.0 - 102.6 - 

5 164.9 - 165.3 - 

6 96.8 5.98 (d, 2.2) 96.9 6.01 (d, 2.5) 

7 164.4 - 164.7 - 

8 95.2 5.91 (d, 2.2) 95.4 5.93 (d, 2.5) 

8a 163.5 - 163.4 - 

9 32.4 (a) 3.16 (dd, 14.0, 4.6) 32.4 (a) 3.14 (dd, 

13.9,4.5) 

(b) 2.65 (dd, 14.0, 10.6) (b) 2.65 (dd, 

13.9,7.0) 

1’ 131.1 - 131.2 - 

2’ 115.4 6.81 (d, 1.9) 115.4 6.80 (d, 2.3) 

3’ 146.0 - 145.8 - 

4’ 145.7 - 145.7 - 

5’ 111.0 6.80 (d, 8.1) 111.1 6.79 (d, 8.2) 

6’ 120.8 6.70 (dd, 8.1, 1.9) 120.9 6.70 (dd, 
8.2,2.3) 

3’-OMe - - 56.2 3.88 (s) 

4’-OMe 56.2 3.88 (s) - - 

5-OH - 12.13 (s) - 12.15 (s) 
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Table 5. NMR Data for Compound 10 (500 MHz, CDCl3, J in Hz). 

10 

No. 
13

C  Type 
1
H (J in Hz) HMBC 

(H→C) 
COSY NOESY 

2 167.5 C     

3 101.9 CH 5.64 (d, 7.8) 4 4 4 

4 143.7 CH 7.41 (d, 7.8) 2, 3, 4a 3 3 

4a 144.8 C     

5 116.4 CH 6.69 (d, 8.0) 4, 4a, 6, 7 6 6 

6  121.3 CH 6.54 (dd, 8.0 2.1) 4a, 5, 8 5 5, 9 

7  131.9 C     

8 117.3 CH 6.66 (d, 2.1) 4a, 6  6, 9 

8a 151.7 C     

9 39.9 CH2 2.68 (t, 7.4) 6, 7, 8, 10 10 6, 8, 10 

10 64.8 CH2 3.69 (t, 7.4) 7, 9 9 9 

 

 

Table 6. NMR Data for Compounds 6-9 (500 MHz, CDCl3, J in Hz). 

 6 7 8 9 

No. δC δH δC δH δC δH δC δH HMBC (H → C) 

1 23.7 

 

(α) 1.57 (d, 2.5) 23.7 (α) 1.54 br s  32.8 (α) 2.03 (m)* 39.2 (α) 1.87 (m) 3, 5, 9, 10 

(β) 1.18 (s) (β) 1.17 (d, 2.1)  (β) 1.69 (m)  (β) 1.38 (d)*  

2 29.8 
 

(α) 2.23 (m) 29.8 
 

(α) 2.22 (d, 3.5) 28.8 
 

(α) 2.27 (dd, 12.8, 2.7) 27.7 (α) 2.08 (m)  

(β) 1.77 (t, 3.7) (β) 1.77 (d, 1.92) (β) 1.32 (d, 5.0)*  (β) 1.77 (m)  

3 75.1 4.17 (bs, W1/2 = 8.4 Hz) 74.9 4.26 (bs, W1/2 = 9.1 Hz) 78.6 3.78 (m, W1/2 = 24.5 Hz) 77.0 4.29 (bt, W1/2 = 20.7) 4, 5, 1’ 

4 37.4 (α) 2.17 (d, 4.3) 35.6 (α) 2.17 s  36.9 

 

(α) 1.95 (m) 131.7 5.94 (br s) 2, 6, 10 

- (β) 1.71 (d, 4.7) (β) 1.76 (d, 3.7) (β) 1.31 (d, 5.0)* 

5 75.3 - 75.0 - 44.3 1.63 (m) 143.2 - 4, 5, 8, 10, 6-OAc(a) 

6 36.4 (α) 2.22 (d, 4.9) 38.0 

 

(α) 2.14 (d, 2.8) 32.3 

 

(α) 2.43 (dt, 13.6, 3.2) 77.6 

 

5.47 (dd, 8.6, 2.6) 5, 6, 8, 9, 14 

 (β) 1.64 (t, 2.8) (β) 1.71 (d, 5.0) (β) 1.05 (td, 14.0, 3.5) 

7 19.2 (α) 2.09 (m) 19.1 (α) 2.18 (d, 3.0) 30.3 
 

(α) 2.58 (s) 38.7 (α) 2.39 (dd, 15.5, 2.3) - 

(β) 1.78 (m) (β) 1.71 (d, 4.9) (β) 2.02 (m)* (β) 1.69 (m) 10, 19 
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8 40.7 1.74 (d, 3.3) 40.7 1.73 m 44.1 1.42 (m) 77.5 - - 

9 43.2 1.98 (d, 2.8) 43.1 1.98 (d, 2.9) 49.9 1.30 (m) 52.2 1.43 (m) 9, 10 

10 56.3 - 56.4 - 53.0 - 38.1 - 8, 13 

11 25.4 (α) 2.21 (br s) 25.5 (α) 2.20 (d, 1.77) 23.3 
 

(α) 1.74 (dd, 13.0, 5.0) 19.4 (α) 1.86 (m) 9, 11, 13, 14 

(β) 1.42 (d, 3.8) (β) 1.40 m (β) 1.21 (d, 7.1) (β) 1.49 (m) 13 

12 41.6 

 

(α) 1.52 (d, 3.2) 41.6 (α) 1.52 (d, 2.0) 41.5 

 

(α) 1.51 (t, 3.1) 42.1 (α) 1.45 (m) - 

(β) 1.47 (d, 4.1) (β) 1.44 br s  (β) 1.40 (d, 3.0) (β) 1.62 (m) - 

13 49.0 - 49.0 - 49.6 - 50.5 - 8, 16 

14 85.8 - 85.8 - 85.6 - 86.5 - 14, 16, 17 

15 32.5 (α) 2.12 (d, 2.9) 32.5 
 

(α) 2.10 (d, 5.0) 31.7 
 

(α) 2.01 (m)* 35.1 (α) 2.05 (d)* 13, 14, 15, 20 

(β) 1.69 (d, 5.7) (β) 1.70 (d, 3.7) (β) 1.34 (m) (β) 1.68 (d, 8.4) 13, 14, 17, 20 

16 26.2 (α) 1.86 (m) 26.3 

 

(α) 1.90 m 29.8 

 

(α) 2.19 (dt, 12.6, 9.8) 30.3 (α) 2.19 (m) 12, 13, 14, 16, 20, 22 

(β) 1.72 (d, 4.9) (β) 1.69 (d, 4.0) (β) 1.62 (d, 9.4) (β) 1.72 (m) 12, 13, 14, 17 

17 52.1 2.58 (dd, 9.4, 6.5) 52.1 2.57 (dd, 9.6, 6.7) 52.2 2.55 (dd, 9.4, 6.5) 52.9 2.56 (dd, 9.2, 6.5) 1, 5, 9, 10 

18 17.2 0.70 (s) 17.2 0.70 s 17.2 0.67 (s) 19.8 0.92 (s) - 

19 209.8 10.10 (s) 210.2 10.08 s 210.7 10.01 (s) 22.4 1.36 (s) 17, 20, 22, 24 

20 125.0 - 125.0 - 125.0 - 125.3 - 17, 21, 24 

21 150.7 7.45 (dd, 2.4, 0.8) 150.7 7.44 (d, 1.7) 150.6 7.44 (d, 1.7) 150.6 7.43 (d, 1.6) 20, 24 

22 149.4 8.01 (dd, 9.7, 2.4) 149.4 8.00 (dd, 12.3, 2.0) 149.4 7.99 (dd, 9.7, 2.4) 149.4 8.03 (dd, 9.7, 2.5) - 

23 115.6 6.30 (dd, 9.7, 0.6) 115.6 6.30 (d, 9.7) 115.6 6.30 (d, 9.7) 115.6 6.31 (d, 9.7) 3, 3’ 

24 164.9 - 164.9 - 164.9 - 165.0 - 1’, 4’ 

1’ 101.1 4.87 m* 102.0 4.43 (d, 7.8) 102.5 4.40 (d, 7.8) 103.8 4.43 (d, 7.7) 1’, 2’, 4’, 5’ 

2’ 72.6 3.63 (d, 3.3) 75.2 3.19 (dd, 9.2, 7.9) 75.2 3.14 (dd, 9.0, 7.8) 75.2 3.19 (dd, 9.2, 7.7) 3’, 5’ 

3’ 72.7 3.80 (dd, 3.2, 1.8) 78.4 3.37 m 78.1 3.37 (m) 78.2 3.38 (t, 8.8) 4’, 6’ 

4’ 73.9 3.42 (t, 9.4) 78.3 3.29* m 78.0 3.28 (d, 1.5) 78.1 3.29 (br s) 4’, 5’ 

5’ 70.8 3.65 m 71.8 3.30* m 71.8 3.29 * m 71.8 3.31 (d, 7.6) 4’, 5’ 

6’ 18.1 1.29 (d, 6.2)* 62.9 

 

(a) 3.98 (d, 11.6) 62.9 

 

(a) 3.88 (d, 11.4) 62.9 (a) 3.88 (m)  

 (b) 3.70 (dd, 11.6, 5.1) (b) 3.67 (m) (b) 3.68 (dd, 11.7, 5.2)  

6-OAc - - - -   171.7 -  

- -  -   21.7 2.04 (s)*  

*=overlapped resonances. 
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Figure Legends. 

Fig. 1. Compounds isolated from R. cryptopodus, R. rotundus and R. cyathiformis. 

Fig. 2. Dose-response curves for inhibition of proliferation of indicated cell types by compounds 1 and 2. Mean±SEM, n=3. 

Fig. 3. Migration assays for HRECs treated with compounds 1 and 2. Representative images of the highest concentration treatment of each 

compound or DMSO control shown (scale bars = 1 mm) and quantification of migrated cells. Mean±SEM, n=3. ***, P < 0.001 compared to 
DMSO, ANOVA with Dunnett’s post hoc tests.   

Fig. 4. Tube formation assays for HRECs treated with compounds 1 and 2. Representative images of highest concentration treatment of each 
compound or DMSO control shown (scale bars = 1 mm) along with quantification of tubule length, Mean±SEM, n=6. **, P < 0.01; ***, P < 

0.001, ANOVA with Dunnett’s post hoc tests. 
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Figures and tables 

 

Fig. 5. Compounds isolated from R. cryptopodus, R. rotundus and R. cyathiformis. 
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Compound HREC GI50 (µM) ARPE-19 GI50 (µM) 92-1 GI50 (µM) Y79 GI50 (µM) 
1 0.13 0.85 0.21 0.83 
2 0.49 40 28 >100 
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Fig. 6. Dose-response curves for inhibition of proliferation of indicated cell types by compounds 1 and 2. Mean±SEM, n=3. 

 

Fig. 7. Migration assays for HRECs treated with compounds 1 and 2. Representative images of the highest concentration treatment of each 

compound or DMSO control shown (scale bars = 1 mm) and quantification of migrated cells. Mean±SEM, n=3. ***, P < 0.001 compared to 
DMSO, ANOVA with Dunnett’s post hoc tests.   
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Fig. 8. Tube formation assays for HRECs treated with compounds 1 and 2. Representative images of highest concentration treatment of each 
compound or DMSO control shown (scale bars = 1 mm) along with quantification of tubule length, Mean±SEM, n=6. **, P < 0.01; ***, P < 
0.001, ANOVA with Dunnett’s post hoc tests. 
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