36 research outputs found

    Monolithic and hybrid integration of InAs/GaAs quantum dot microdisk lasers on silicon

    Get PDF
    A method of hybrid integration of quantum dot microdisk lasers with silicon wafer is proposed and realized. In addition to the possibility of combining microlasers with various silicon-based electronic and photonic devices, this makes it possible to significantly improve heat removal from the active region of the microlaser. The thermal resistance normalized to the mesa area reaches the level of about 0.002 (K/W)*cm2, which is significantly lower than the corresponding values of QD microlasers on GaAs substrate and monolithically grown on Si. As a result, the threshold current as well as current-induced shift of emission wavelength are reduced in continuous-wave regime

    Preliminary results of determination of chemical element concentrations in the aerosol of Venus clouds

    Get PDF
    An X-ray radiometeric experiment is described along with the results of measurements of the elemental composition of aerosols in Venusian clouds. A preliminary analysis of the data showed that sulfur is present in the range of heights 63 to 47 km with mean content of 5.8 mg/cu m and that chlorine is present in the height range 61 t0 52 km with a mean content of 4.1 mg/cu m. The results of measurements in the range 52 to 47 km may come to an agreement if phosphorus is present in the aerosol with a mean concentration of 7.7 mg/cu m

    Increasing the quantum efficiency of InAs/GaAs QD arrays for solar cells grown by MOVPE without using strain-balance technology

    Get PDF
    Research into the formation of InAs quantum dots (QDs) in GaAs using the metalorganic vapor phase epitaxy technique ispresented. This technique is deemed to be cheaper than the more often used and studied molecular beam epitaxy. The bestconditions for obtaining a high photoluminescence response, indicating a good material quality, have been found among awide range of possibilities. Solar cells with an excellent quantum ef?ciency have been obtained, with a sub-bandgapphoto-response of 0.07 mA/cm2per QD layer, the highest achieved so far with the InAs/GaAs system, proving the potentialof this technology to be able to increase the ef?ciency of lattice-matched multi-junction solar cells and contributing to abetter understanding of QD technology toward the achievement of practical intermediate-band solar cells

    Near field scanning optical microscopy for investigation of high power semiconductor lasers

    Full text link
    В данной работе были исследованы карты распределения ближнего поля InGaAs/GaAs/AlGaAs полосковых инжекционных лазеров при различных токах накачки. Было показано, что в структурах, состоящих из двух резонансно связанных волноводов, наблюдается подавление мод высоких порядков.Near field intensity distributions of InGaAs/GaAs/AlGaAs lasers including broadened waveguides based on coupled large optical cavity (CLOC) structures were investigated. It was demonstrated that scanning near field optical microscopy gives direct proof of suppressing the transverse high-order mode lasing.Работа выполнена при поддержке РНФ (соглашение № 14-42-00006-П
    corecore