54 research outputs found

    Closed-loop liquid-liquid immiscibility in mixture of particles with spherically symmetric interaction

    Full text link
    Thermodynamic perturbation theory for central-force (TPT-CF) type of associating potential is used to study the phase behavior of symmetric binary mixture of associating particles with spherically symmetric interaction. The model is represented by the binary Yukawa hard-sphere mixture with additional spherically symmetric square-well associative interaction located inside the hard-core region and valid only between dissimilar species. To account for the change of the system packing fraction due to association we propose an extended version of the TPT-CF approach. In addition to the already known four types of the phase diagram for binary mixtures we were able to identify the fifth type, which is characterized by the absence of intersection of the Ξ»\lambda-line with the liquid-vapour binodals and by the appearance of the closed- loop liquid-liquid immiscibility with upper and lower critical solution temperatures.Comment: 11 pages, 5 figure

    Second-order Barker-Henderson perturbation theory for the phase behavior of polydisperse Morse hard-sphere mixture

    Full text link
    We propose an extension of the second-order Barker-Henderson perturbation theory for polydisperse hard-sphere multi-Morse mixture. To verify the accuracy of the theory, we compare its predictions for the limiting case of monodisperse system, with predictions of the very accurate reference hypernetted chain approximation. The theory is used to describe the liquid-gas phase behavior of the mixture with different type and different degree of polydispersity. In addition to the regular liquid-gas critical point, we observe the appearance of the second critical point induced by polydispersity. With polydispersity increase, the two critical points merge and finally disappear. The corresponding cloud and shadow curves are represented by the closed curves with 'liquid' and 'gas' branches of the cloud curve almost coinciding for higher values of polydispersity. With a further increase of polydispersity, the cloud and shadow curves shrink and finally disappear. Our results are in agreement with the results of the previous studies carried out on the qualitative van der Waals level of description.Comment: 13 pages, 4 figure

    Fluid of fused spheres as a model for protein solution

    Full text link
    In this work we examine thermodynamics of fluid with "molecules" represented by two fused hard spheres, decorated by the attractive square-well sites. Interactions between these sites are of short-range and cause association between the fused-sphere particles. The model can be used to study the non-spherical (or dimerized) proteins in solution. Thermodynamic quantities of the system are calculated using a modification of Wertheim's thermodynamic perturbation theory and the results compared with new Monte Carlo simulations under isobaric-isothermal conditions. In particular, we are interested in the liquid-liquid phase separation in such systems. The model fluid serves to evaluate the effect of the shape of the molecules, changing from spherical to more elongated (two fused spheres) ones. The results indicate that the effect of the non-spherical shape is to reduce the critical density and temperature. This finding is consistent with experimental observations for the antibodies of non-spherical shape.Comment: 12 pages, 5 figure

    Liquid-vapour coexistence in the dipolar Yukawa hard-sphere fluid

    Get PDF
    Thermodynamic perturbation theory for central-force associating potentials and Monte Carlo simulations are used to study the phase behaviour of the dipolar Yukawa hard-sphere fluid over a wide range of the particle dipole moment, ΞΌ. Liquid-vapour coexistence is found to exist for values of ΞΌ far in excess of a β€œthreshold” value found in earlier simulation studies. The predictions of the present theory are found to be in reasonably good agreement with computer simulation results, all the way up to the highest dipole moment studied

    ΠœΠ΅Ρ‚ΠΎΠ΄ Π³Π»Π°Π²Π½Ρ‹Ρ… ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ Π² Π·Π°Π΄Π°Ρ‡Π°Ρ… статистичСских ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² сигналов (систСматизированный ΠΎΠ±Π·ΠΎΡ€)

    No full text
    ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½ ΠΌΠ΅Ρ‚ΠΎΠ΄ Π“Π»Π°Π²Π½Ρ‹Ρ… Π˜Π½Ρ„ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… ΠšΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ PIC (Principal Informative Components) для Π·Π°Π΄Π°Ρ‡ статистичСских ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΏΠΎΠ΄Π»Π΅ΠΆΠ°Ρ‰ΠΈΠΉ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΡŽ сигнал нСпосрСдствСнно Π½Π΅ Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ. К Ρ‚Π°ΠΊΠΈΠΌ случаям относятся восстановлСниС ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ, идСнтификация систСм, ΠΎΠ±Ρ€Π°Ρ‰Π΅Π½ΠΈΠ΅ ΠΊΠ°Π½Π°Π»ΠΎΠ² связи, томография срСд ΠΈ Π΄Ρ€. ΠžΠ±Ρ‰Π΅ΠΉ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΡŒΡŽ Ρ‚Π°ΠΊΠΈΡ… Π·Π°Π΄Π°Ρ‡ являСтся, ΠΊΠ°ΠΊ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, Π½Π΅ΡƒΡΡ‚ΠΎΠΉΡ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ ΠΈΡ… Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ ΠΊ ΠΌΠ°Π»Ρ‹ΠΌ измСнСниям исходных Π΄Π°Π½Π½Ρ‹Ρ…, Ρ‡Ρ‚ΠΎ ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ привлСчСния ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² рСгуляризации. Π‘ΡƒΡ‚ΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° PIC состоит Π² использовании Π΄Π΅ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†ΠΈΠΈ сигналов Π² ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… базисах, сформированных ΠΈΠ· собствСнных Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΎΡ€Π° Π€ΠΈΡˆΠ΅Ρ€Π°. Π­Ρ‚ΠΈ базисы родствСнны извСстному Π² статистикС ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ Π“Π»Π°Π²Π½Ρ‹Ρ… ΠšΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ PCA (Principal Components Analysis), ΠΎΠ΄Π½Π°ΠΊΠΎ ΠΈΠΌΠ΅ΡŽΡ‚ нСсколько ΠΈΠ½ΠΎΠΉ смысл ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Π½ΠΈΠΌ. Π’ ΠΎΠ±Π·ΠΎΡ€Π΅ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π·Π° счСт ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΡ€Π°Π²ΠΈΠ» ΠΎΡ‚Π±ΠΎΡ€Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, Π²ΠΎ-ΠΏΠ΅Ρ€Π²Ρ‹Ρ…, Π³Π°Ρ€Π°Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΡƒΡΡ‚ΠΎΠΉΡ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ ΠΎΡ†Π΅Π½ΠΊΠΈ сигнала ΠΊ нСпрСдсказуСмым Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°ΠΌ Π·Π°Π΄Π°Ρ‡ΠΈ, Π²ΠΎ-Π²Ρ‚ΠΎΡ€Ρ‹Ρ…, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΡ‚ΡŒ сущСствСнноС сниТСниС ΠΎΠ±Ρ‰Π΅ΠΉ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с «прямыми» ΠΎΡ†Π΅Π½ΠΊΠ°ΠΌΠΈ сигнала, Ρ‚. Π΅. Π±Π΅Π· использования базисных прСдставлСний. Π”Π°Π½ΠΎ обоснованиС примСнСния ΠΌΠ΅Ρ‚ΠΎΠ΄Π° PIC для Π·Π°Π΄Π°Ρ‡ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ ΠΈ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ оцСнивания. Π’Π°ΠΊΠΆΠ΅ рассмотрСна комбинированная ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠ³ΠΎ базиса, которая сочСтаСт прСимущСства физичСского ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π° (Π½Π°Π³Π»ΡΠ΄Π½ΠΎΡΡ‚ΡŒ, ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ) с прСимущСствами статистико-ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π° (минимизация статистичСских ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚Π΅ΠΉ). Указанная ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° основана Π½Π° ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠ³ΠΎ базиса Π½Π° подпространство PIC. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ сокращаСтся Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Ρ… Ρ„Π»ΡƒΠΊΡ‚ΡƒΠ°Ρ†ΠΈΠΉ ΠΎΡ†Π΅Π½ΠΊΠΈ сигнала ΠΈ пониТаСтся вСрхняя Π³Ρ€Π°Π½ΠΈΡ†Π° статистичСской ошибки Π΅Π³ΠΎ измСрСния. Π”Π°Π½Ρ‹ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ числСнныС ΠΎΡ†Π΅Π½ΠΊΠΈ эффСктивности ΠΌΠ΅Ρ‚ΠΎΠ΄Π° PIC Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ Π·Π°Π΄Π°Ρ‡ΠΈ акустичСской Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ срСды, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π°ΡŽΡ‚ ΠΎΠ±Ρ‰ΠΈΠ΅ тСорСтичСскиС Π²Ρ‹Π²ΠΎΠ΄Ρ‹. Π’Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ Π°Π½Π°Π»ΠΈΠ· Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ, Π³Π΄Π΅ ΠΈΠ΄Π΅ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° PIC ΠΈΠΌΠ΅ΡŽΡ‚ пСрспСктивы для практичСского внСдрСния. Π’ частности, высказано ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· Ρ‚Π°ΠΊΠΈΡ… пСрспСктивных областСй ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ MIMO систСмы, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΈΠ³Ρ€Π°ΡŽΡ‚ Π²Π°ΠΆΠ½ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Π² систСмах бСспроводного доступа 5G
    • …
    corecore