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Abstract 

Thermodynamic perturbation theory for central-force associating potentials and Monte Carlo 

simulations are used to study the phase behaviour of the dipolar Yukawa hard- sphere fluid over a 

wide range of the particle dipole moment, μ. Liquid-vapour coexistence is found to exist for values of 

μ far in excess of a `threshold' value found in earlier simulation studies. The predictions of the present 

theory are found to be in reasonably good agreement with computer simulation results, all the way up 

to the highest dipole moment studied. 

 

Introduction 

The dipolar Yukawa hard-sphere (DYHS) fluid is a simple and convenient molecular model which 

can be used to describe the properties of polar molecular fluids. It consists of hard spheres interacting 

via attractive Yukawa and point-dipolar potentials. Liquid-vapour coexistence in the non-polar model 

– the Yukawa hard-sphere (YHS) fluid – has been studied to high precision using the self-consistent 

Ornstein-Zernike approxi- mation and computer simulations
[1]

. The polar model with a repulsive 

Yukawa potential can be used to model charge-stabilised colloidal ferro fluids
[2]

. Recently, liquid-

vapour coexistence in the DYHS fluid was studied both theoretically and via computer simulations by 

Szalai et al.
[3, 4]

. According to the computer simulation data
[4]

 the liquid-vapour phase equilibrium 

disappears beyond a large, threshold dipole moment. As the dipole moment is increased, the role of 

the Yukawa interaction diminishes, and the properties of the DYHS fluid should approach those of the 

dipolar hard-sphere (DHS) fluid. Estimates of the critical parameters for the DHS fluid have recently 

been published
[5]

; one might therefore expect the transi- tion to survive in the DYHS fluid to very 

high values of the dipole moment, and that the critical parameters will approach those of the DHS 

fluid. 

In this paper we present new theoretical and computer simulation results for the liquid-vapour 

coexistence envelope of the DYHS fluid, and compare them against existing theoretical and computer 

simulation predictions. We provide results for dipole interaction strengths more than twice as high as 

those studied previously
[4]

. Theoretical results are generated using an extension of a recently proposed 

thermodynamic perturbation theory designed to treat associating fluids with central forces
[6]

. 

 

The model 

We consider a one-component fluid at a temperature T and a number density ρ, with the particles 

interacting via the following pair potential 
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where Uhs(r) is the hard-sphere potential, Uy(r) is the Yukawa potential 

 

and Udd(12) is the dipole-dipole potential 

 

Here ‘12’ denotes the relative positions and orientations of particles 1 and 2,σ is the hard-sphere 

diameter, ϵy and z are the Yukawa potential energy and range parameters, respectively, µ is the dipole 

moment, θ 1 and θ 2 denote the angles between the dipole vectors and the pair-separation vector r, and 

ɸ1 and ɸ2 are the azimuthal angles about r. We set z = 1:8=σ as in previous studies
[1,3,4]

. We define 

reduced units in terms of the potential parameters and the thermal energy kBT as follows: number 

density ρ* = ρσ
3
; dipole moment μ* = √μ

2
/ϵyσ

3
; `Yukawa' temperature Ty* = kBT/ϵy; and ‘dipolar’ 

temperature Td = kBTσ
3
/μ

2
. 

 

Theory 

The theoretical description of the DYHS fluid is carried out using thermodynamic perturbation the- 

ory for central-force (TPT-CF) associating potentials, developed earlier
[6, 7]

. In the TPT-CF approach, 

the total pair potential is represented as a sum of reference Uref(12) and associating Uass(12) parts: 

 

Following earlier studies
[6]

, we define Uref(12) and Uass(12) as 

 

 

With these definitions, the global potential energy minimum, corresponding to the “nose-to-tail” 

parallel configuration of the dipoles (θ1 = θ2 = 0, θ1 = θ2 = π), is included in Uass(12); this minimum is 

responsible for the formation of chains in the system
[8]

. In eqs. (5) and (6) n plays the role of a 

potential-splitting parameter, since it controls the distribution of Udd(12) between Uref(12) and 

Uass(12). According to previous studies
[6]

 the optimal choice is n = 3, and we adopt this value here. 
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Given Uref(12) and Uass(12), the Helmholtz free energy A of the system can also be represented as a 

sum of reference and associating parts: 

 

For the associative part Aass we have
[6] 

 

where β = 1/kBT, , σ1 = (1 + x)σ0, and x satisfies the equation 

 

in which 

 

and gref(12) is the radial distribution function (RDF) of the reference system. The properties of the 

reference system are calculated using the scheme developed by Rushbrooke, Stell, and Høye
[9]

. The 

Helmholtz free energy of the reference system Aref is expressed using the Padé approximation, 

 

where Aref
(0)

 is the Helmholtz free energy of the YHS fluid, which we calculate using the equation of 

state developed for that system by Henderson et al.
[10]

. The terms Aref
(2)

 and Aref
(3)

 are given by 

 

 

where gyhs(r) is the RDF of the YHS fluid, and the expressions for w2(r) and w3(r12, r13, r23) are given 

in the appendix. Finally, for the RDF of the reference system gref(12) in eq. (10) we used the 

approximation 
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where yyhs(r) is the YHS fluid cavity distribution function. yyhs(r) and gyhs(r) are calculated by solving 

modified hypernetted chain approximation with hard-sphere bridge function due to Malijevsky and 

Labik
[11]

. The TPT-CF scheme yields the total Helmholtz free energy of the system (7). All other 

thermodynamic quantities, and in particular those required for the determination of phase equilibrium 

(pressure and chemical potential), are calculated using standard relations. 

 

Computer simulations 

We used Wang-Landau, flat-histogram Monte Carlo (MC) simulations in the grand-canonical 

ensemble to determine the canonical partition function Q(N, V, T), up to an irrelevant factor C, as a 

function of particle number N in a fixed cubic volume V = L
3
 = 1000σ

3
 at temperature T. From C × 

Q(N, V, T) one can determine the number-density distribution at fixed chemical potential, and hence 

solve the conditions for phase coexistence; the complete procedure is described in ref.
[12]

. The long-

range dipolar interactions were handled using the Ewald summation
[13]

 with conducting boundary 

conditions, real-space screening parameter α = 6/L, and 552 reciprocal-space wavevectors. In order to 

enhance the efficiency of particle insertions and deletions, rotational biasing of the dipole orientations 

was performed as described in ref.
[14]

. The coexistence results reported here are from averages over 

five independent runs. To estimate the critical temperature Tc and critical density ρc, we fitted the 

coexistence densities to the standard scaling relation
[15]

 

 

where α = 0.11, β = 0.326, and Δ = 0.52 are the usual Ising critical exponents, ρ+ and ρ− are the liquid 

and vapour coexistence densities, respectively, and t = |T − Tc|/Tc. In practice, B0 could not be fitted 

with a relative uncertainty < 100%, and so it was set to zero. 

 

Results and discussion 

We first compare liquid-vapour coexistence envelopes in the ρ*-Ty* plane, computed from theory and 

from MC simulations. In fig. 1 we present results for (μ*)
2
 = 4, 9, 16, 25, and 36. For comparison we 

also include the computer simulation and mean spherical approximation (MSA) results of Szalai et 

al.
[3, 4]; we do not show results of the perturbation theory proposed by these authors, since its 

predictions for the phase behaviour are less accurate than those of the MSA. According to the NPT + 

test particle insertion simulation results of Szalai et al.
[4]

, liquid-vapour coexistence is absent for 

(μ*)
2⩾16. However, our computer simulation results show that liquid-vapour coexistence persists up 
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to at least (μ*)
2
 = 36. The fact that Szalai et al.'s constant-pressure simulations indicate no transition at 

high μ* may be due to the characteristic chaining in dipolar systems, which strongly suppresses 

volume fluctuations and hence precludes simulation convergence. For (μ*)
2
 = 4 the predictions of 

both computer simulation studies almost coincide; however, for (μ*)
2
 = 9 one can already see 

differences between the critical temperatures of about 8%, and between the critical densities of about 

18%. These apparent discrepancies might arise from the difficulty in extrapolating sub-critical data to 

the critical region; note that neither we nor Szalai et al. performed finite-size scaling studies. 

 

 

Figure 1. Liquid-vapour coexistence curves for the DYHS fluid in the ρ*-Ty* plane. Simulation 

results are shown for, from bottom to top, (μ*)
2
 = 4, 9, 16, 25, and 36. Circles and dotted lines: MC 

and fit from eq.(15); squares: MC
[4]; filled symbols indicate critical points. Theoretical results are 

shown for, from bottom to top, (μ*)
2
 = 4, 9, 16, 25, and 36. Solid lines: TPT-CF; dashed lines: 

MSA
[3]

; filled symbols indicate critical points. 

 

For (μ*)
2
 = 4, the theoretical results are in a good quantitative agreement with simulation results. As 

μ* is increased, the accuracies of both the MSA and TPT-CF decrease, with the MSA being 

substantially less accurate for the larger dipole values, (μ*)
2⩾25. While for (μ*)

2
 = 9 both theories 

underestimate the critical temperature, for (μ*)
2⩾16 MSA overestimates it and for (μ*)

2⩾9 TPT-CF 

underestimates it. In all cases TPT-CF reproduces the overall shape of the phase diagrams more 

faithfully than does the MSA. 
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In figs. 2 and 3 we compare theoretical and computer simulation predictions for the critical 

Yukawa/dipolar temperatures and critical density as functions of (μ*)
2
 (upper panels) and 1/(μ*)

2
 

(lower panels). While TPT-CF predictions are in relatively good agreement with simulation estimates 

of the critical temperature at all values of (μ*)
2
, the MSA is accurate only at low values. For the 

critical density both theories give results which are in a good qualitative agreement with simulation 

estimates. 

 

 

Figure 2. Critical Yukawa temperature Ty,c* as a function of (μ*)
2
 (upper panel), and critical dipolar 

Td,c* as a function of 1/(μ*)
2
 (lower panel). Open circles: MC; solid lines: TPT-CF; dashed lines: 

MSA
[3]

; filled circle, upper panel: MC (YHS fluid)
[1]

; filled circle, lower panel: MC (DHS fluid)
[5]

. 
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Figure 3. Critical density ρc* as a function of (μ*)
2
 (upper panel) and 1/(μ*)

2
 (lower panel). Open 

circles: MC; solid lines: TPT-CF; dashed lines: MSA
[3]

; filled circle, upper panel: MC (YHS fluid)
[1]

; 

filled circle, lower panel: MC (DHS fluid)
[5]

. 

 

In the limiting case 1/(μ*)
2
 → 0, the DYHS critical temperature Td,c* and critical density ρc* should 

approach the corresponding values for the dipolar hard-sphere fluid. The extrapolation of Td,c* to the 

DHS limit seems straightforward and a linear fit to the simulation results for (μ*)
2
 = 16, 25, and 36 

gives Td,c* = 0.1693(3), 10% above the DHS value Td,c* = 0.153(1)
[5]

. The extrapolation of ρc* to the 

DHS limit seems far more difficult, and should depend crucially on what happens above (μ*)
2
 = 36. 

(Two of us—GG and PJC—are currently exploring this question.) However, it is not inconceivable 

that ρc* would approach the DHS value of ≃ 0.1
[5]

. Determining ρc* is always difficult due to the 

critical region of the coexistence envelope being very ‘flat’. In addition, simulations with (μ*)
2
 = 36 

are near the limits of our computational ability, due to the extent of chaining and the associated finite-

size effects
[12]

. As a result, the coexistence curve in fig. 1 looks unusual in shape. 

 

Conclusions 

New theoretical and computer simulation results for the phase behaviour of the DYHS fluid are 

presented and compared against existing theoretical and computer simulation predictions. Theoretical 

results are generated using an extension of a recently proposed thermodynamic perturbation theory for 
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associating fluids with central interaction potentials. In previous simulation work, it was claimed that 

liquid-vapour coexistence disappears above a threshold value of the dipole moment, (μ*)
2⩾16. In 

contrast, our simulations show that the transition persists up to at least (μ*)
2
 = 36. (We note that in the 

case of the Stockmayer fluid, a similar conflict has arisen between early simulations using the Gibbs 

ensemble technique
[16, 17]

 and recent simulation work
[12, 18].

) In the limiting case of infinitely large 

dipole moment, the phase diagram of the dipolar Yukawa hard-sphere fluid should approach that of 

the dipolar hard-sphere fluid; the DYHS results are at least consistent with this expectation. The 

present theory performs very well against simulation results, and is generally more accurate than the 

MSA, especially for large values of the dipole moment.  
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Appendix 

For w2(r) and w3(r12, r13, r23), which enter eqs. (12) and (13), we have 

 

where A = 17825792/225450225, 

 

and α1 and α2 are the interior angles at particles 1 and 2, respectively, in the triangle formed by 

particles 1, 2, and 3. The values of the integer numbers ki, li, and mi can be obtained from the 

corresponding author upon request. 
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