445 research outputs found

    Compton Scattering from the Deuteron and Extracted Neutron Polarizabilities

    Full text link
    Differential cross sections for Compton scattering from the deuteron were measured at MAX-lab for incident photon energies of 55 MeV and 66 MeV at nominal laboratory angles of 4545^\circ, 125125^\circ, and 135135^\circ. Tagged photons were scattered from liquid deuterium and detected in three NaI spectrometers. By comparing the data with theoretical calculations in the framework of a one-boson-exchange potential model, the sum and difference of the isospin-averaged nucleon polarizabilities, αN+βN=17.4±3.7\alpha_N + \beta_N = 17.4 \pm 3.7 and αNβN=6.4±2.4\alpha_N - \beta_N = 6.4 \pm 2.4 (in units of 10410^{-4} fm3^3), have been determined. By combining the latter with the global-averaged value for αpβp\alpha_p - \beta_p and using the predictions of the Baldin sum rule for the sum of the nucleon polarizabilities, we have obtained values for the neutron electric and magnetic polarizabilities of αn=8.8±2.4\alpha_n= 8.8 \pm 2.4(total) ±3.0\pm 3.0(model) and βn=6.52.4\beta_n = 6.5 \mp 2.4(total) 3.0\mp 3.0(model), respectively.Comment: 4 pages, 2 figures, revtex. The text is substantially revised. The cross sections are slightly different due to improvements in the analysi

    Centrosome misorientation reduces stem cell division during ageing

    Full text link
    Asymmetric division of adult stem cells generates one self- renewing stem cell and one differentiating cell, thereby maintaining tissue homeostasis. A decline in stem cell function has been proposed to contribute to tissue ageing, although the underlying mechanism is poorly understood. Here we show that changes in the stem cell orientation with respect to the niche during ageing contribute to the decline in spermatogenesis in the male germ line of Drosophila. Throughout the cell cycle, centrosomes in germline stem cells ( GSCs) are oriented within their niche and this ensures asymmetric division. We found that GSCs containing misoriented centrosomes accumulate with age and that these GSCs are arrested or delayed in the cell cycle. The cell cycle arrest is transient, and GSCs appear to re- enter the cell cycle on correction of centrosome orientation. On the basis of these findings, we propose that cell cycle arrest associated with centrosome misorientation functions as a mechanism to ensure asymmetric stem cell division, and that the inability of stem cells to maintain correct orientation during ageing contributes to the decline in spermatogenesis. We also show that some of the misoriented GSCs probably originate from dedifferentiation of spermatogonia.University of Michigan ; March of Dimes Basil O'Conner Starter Scholar Research Award ; Searle Scholar Program ; NIH [P01 DK53074, R01GM072006]We thank C. Gonzalez, D. McKearin, N. Rusan, M. Peifer and the Bloomington Stock Center for fly stocks; R. Lehmann, C. Field and the Developmental Studies Hybridoma Bank for antibodies; M. Kiel and D. Nakada for help with X-ray irradiation; and S. Morrison and T. Mahowald for comments on the manuscript. This research was supported by a University of Michigan start-up fund, March of Dimes Basil O'Conner Starter Scholar Research Award and the Searle Scholar Program (to Y.M.Y.), and NIH grants P01 DK53074 (to M.T.F.) and R01GM072006 (to A.J.H.).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62879/1/nature07386.pd

    Role of IKK/NF-κB Signaling in Extinction of Conditioned Place Aversion Memory in Rats

    Get PDF
    The inhibitor κB protein kinase/nuclear factor κB (IKK/NF-κB) signaling pathway is critical for synaptic plasticity. However, the role of IKK/NF-κB in drug withdrawal-associated conditioned place aversion (CPA) memory is unknown. Here, we showed that inhibition of IKK/NF-κB by sulphasalazine (SSZ; 10 mM, i.c.v.) selectively blocked the extinction but not acquisition or expression of morphine-induced CPA in rats. The blockade of CPA extinction induced by SSZ was abolished by sodium butyrate, an inhibitor of histone deacetylase. Thus, the IKK/NF-κB signaling pathway might play a critical role in the extinction of morphine-induced CPA in rats and might be a potential pharmacotherapy target for opiate addiction

    Inhibition of nuclear factor kappa-B signaling reduces growth in medulloblastoma in vivo

    Get PDF
    Abstract Background Medulloblastoma is a highly malignant pediatric brain tumor that requires surgery, whole brain and spine irradiation, and intense chemotherapy for treatment. A more sophisticated understanding of the pathophysiology of medulloblastoma is needed to successfully reduce the intensity of treatment and improve outcomes. Nuclear factor kappa-B (NFκB) is a signaling pathway that controls transcriptional activation of genes important for tight regulation of many cellular processes and is aberrantly expressed in many types of cancer. Methods To test the importance of NFκB to medulloblastoma cell growth, the effects of multiple drugs that inhibit NFκB, pyrrolidine dithiocarbamate, diethyldithiocarbamate, sulfasalazine, curcumin and bortezomib, were studied in medulloblastoma cell lines compared to a malignant glioma cell line and normal neurons. Expression of endogenous NFκB was investigated in cultured cells, xenograft flank tumors, and primary human tumor samples. A dominant negative construct for the endogenous inhibitor of NFκB, IκB, was prepared from medulloblastoma cell lines and flank tumors were established to allow specific pathway inhibition. Results We report high constitutive activity of the canonical NFκB pathway, as seen by Western analysis of the NFκB subunit p65, in medulloblastoma tumors compared to normal brain. The p65 subunit of NFκB is extremely highly expressed in xenograft tumors from human medulloblastoma cell lines; though, conversely, the same cells in culture have minimal expression without specific stimulation. We demonstrate that pharmacological inhibition of NFκB in cell lines halts proliferation and leads to apoptosis. We show by immunohistochemical stain that phosphorylated p65 is found in the majority of primary tumor cells examined. Finally, expression of a dominant negative form of the endogenous inhibitor of NFκB, dnIκB, resulted in poor xenograft tumor growth, with average tumor volumes 40% smaller than controls. Conclusions These data collectively demonstrate that NFκB signaling is important for medulloblastoma tumor growth, and that inhibition can reduce tumor size and viability in vivo. We discuss the implications of NFκB signaling on the approach to managing patients with medulloblastoma in order to improve clinical outcomes.</p

    Analysis of the proteins synthesized in ultraviolet light-irradiated Escherichia coli following infection with the bacteriophages λ drif d 18 and λ dfus -3

    Full text link
    The presence of EF-Tu, RNA polymerase subunit α, and EF-G on the λ dfus -3 genome and EF-Tu, ribosomal proteins L7/L12, and RNA polymerase subunit β on the λ drif d 18 genome has been confirmed using a two-dimensional gel electrophoresis technique sensitive to changes in isoelectric point and molecular weight. In this system two EF-Tu gene products could not be resolved. Following infection of ultraviolet light-irradiated Escherichia coli with either λ dfus -3 or λ drif d 18, the EF-Tu gene, tufA , near 65 minutes on the genetic map is expressed as 3–4 copies per EF-G molecule. The EF-Tu gene, tufB , near 79 minutes on the genetic map, is expressed at about one-third of this rate. α is expressed as 1 copy per EF-G molecule, β as 0.14 per EF-G molecule and L7/L12 as 2.5 per EF-G. These figures compare well with the relative amounts found in exponentially-growing cells, in which the ratio of EF-Tu to EF-G is approximately 5. Almost 90% of the total number of proteins (calculated on a molecular weight basis) which theoretically can be encoded on the λ drif d 18 have been identified on the two-dimensional gel.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47541/1/438_2004_Article_BF00341733.pd

    Glycogen synthase kinase-3 inhibition disrupts nuclear factor-kappaB activity in pancreatic cancer, but fails to sensitize to gemcitabine chemotherapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aberrant activation NF-kappaB has been proposed as a mechanism of drug resistance in pancreatic cancer. Recently, inhibition of glycogen synthase kinase-3 has been shown to exert anti-tumor effects on pancreatic cancer cells by suppressing NF-kappaB. Consequently, we investigated whether inhibition of GSK-3 sensitizes pancreatic cancer cells to the chemotherapeutic agent gemcitabine.</p> <p>Methods</p> <p>GSK-3 inhibition was achieved using the pharmacological agent AR-A014418 or siRNA against GSK-3 alpha and beta isoforms. Cytotoxicity was measured using a Sulphorhodamine B assay and clonogenic survival following exposure of six different pancreatic cancer cell lines to a range of doses of either gemcitabine, AR-A014418 or both for 24, 48 and 72 h. We measured protein expression levels by immunoblotting. Basal and TNF-alpha induced activity of NF-kappaB was assessed using a luciferase reporter assay in the presence or absence of GSK-3 inhibition.</p> <p>Results</p> <p>GSK-3 inhibition reduced both basal and TNF-alpha induced NF-kappaB luciferase activity. Knockdown of GSK-3 beta reduced nuclear factor kappa B luciferase activity to a greater extent than GSK-3 alpha, and the greatest effect was seen with dual knockdown of both GSK-3 isoforms. GSK-3 inhibition also resulted in reduction of the NF-kappaB target proteins XIAP, Bcl-X<sub>L</sub>, and cyclin D1, associated with growth inhibition and decreased clonogenic survival. In all cell lines, treatment with either AR-A014418, or gemcitabine led to growth inhibition in a dose- and time-dependent manner. However, with the exception of PANC-1 where drug synergy occurred with some dose schedules, the inhibitory effect of combined drug treatment was additive, sub-additive, or even antagonistic.</p> <p>Conclusion</p> <p>GSK-3 inhibition has anticancer effects against pancreatic cancer cells with a range of genetic backgrounds associated with disruption of NF-kappaB, but does not significantly sensitize these cells to the standard chemotherapy agent gemcitabine. This lack of synergy might be context or cell line dependent, but could also be explained on the basis that although NF-kappaB is an important mediator of pancreatic cancer cell survival, it plays a minor role in gemcitabine resistance. Further work is needed to understand the mechanisms of this effect, including the potential for rational combination of GSK3 inhibitors with other targeted agents for the treatment of pancreatic cancer.</p
    corecore