635 research outputs found

    Nonequilibrium materials engineering in correlated systems via light-matter coupling

    Get PDF
    The investigation of nonequilibrium phenomena in strongly correlated systems is an intense and increasingly important field of research, both from a theoretical and from an experimental perspective. Experimental advances regarding the creation of ultrashort laser pulses and large field intensities are making it feasible to avoid the decoherences that historically have made the dynamics in driven solid state systems hard to access. However, many of the powerful analytical and numerical equilibrium methods are not applicable in a nonequilibrium setup, largely because of the increasing mixing of energy scales due to the external driving. It is therefore essential to gain a deeper theoretical understanding of systems far from equilibrium. In particular, driven dissipative systems allow for the formation of nonequilibrium steady states and the possibility of phase transitions between them. Here, we present theoretical results on driven quantum spin systems that help to gain an understanding of the different control knobs for driving such nonequilibrium phase transitions. This is of great interest because it paves the way to optically control the properties of quantum many body states. A numerical method that has been shown to generate reliable results for periodically driven, one dimensional systems is the time-dependent density matrix renormalization group (t-DMRG). By simulating the dynamics of a quantum chain with Luttinger liquid and charge-density wave phases under both continous and pulsed laser driving with t-DMRG calculations, we show that the drive causes a light-cone spreading of density-density correlations with a Floquet-engineered propagation velocity through the system. At large time scales, the employed continuous, off-resonant, large frequency driving protocol leads to the formation of a Floquet steady state with negligible heating. Strikingly, the formation of a discontinuity in form of a kink at the edge of the light cone is observed. This kink shows similarities with the discontinuity that has been analytically shown to exist in quenched systems, which indicates that dynamical quantum criticality can be achieved in Floquet-driven systems. These results directly connect to the field of time-resolved spectroscopy, aiming at measuring correlations in strongly correlated materials. Emergent nonequilibrium states of matter prominently feature a high degree of many-body entanglement, which may have a significant effect on the macroscopic finite-temperature behavior of the systems in question. This makes the identification of entanglement in driven quantum systems an important area of research. A quantity that has been shown to act as an entanglement witness is the Quantum Fisher Information (QFI), which can be used to discriminate criticality at nonzero temperatures from thermal behavior. We investigate the QFI in an interaction-quenched one dimensional XXZ quantum chain, transitioning from from adiabatic to nonadiabatic dynamics. In order to identify critical behavior in a driven-dissipative spin system with magnon interactions we study the nonequilibrium steady states of a two-dimensional Heisenberg antiferromagnet which is driven by a high frequency laser and coupled to a reservoir. The interplay between interactions and the flow of energy due to to drive and dissipation is crucial to describe the resulting steady state system. We demonstrate a nonthermal transition that is characterized by a qualitative change in the magnon distribution, from subthermal at low drive to a generalized Bose-Einstein form including a nonvanishing condensate fraction at high drive and find that this transition shows static and dynamical critical scaling. An analysis of the linearized kinetic equation and its spectrum of eigenvalues allows us to draw conclusions about the role of hydrodynamic slow modes in the critical behavior near the transition point. Understanding these mechanisms that determine the critical behavior could help understand nonthermal pathways for controlling emergent properties of driven quantum materials.Die Untersuchung von Nicht-GleichgewichtsphĂ€nomenen in stark korrelierten Systemen ist ein breites und zunehmend an Bedeutung gewinnendes Forschungsgebiet, sowohl aus theoretischer als auch aus experimenteller Sicht. Experimentelle Fortschritte bei der Erzeugung ultrakurzer Laserpulse und großer FeldstĂ€rken machen es möglich, DekohĂ€renzen zu vermeiden, die in der Vergangenheit die Messung der Dynamik angetriebener Festkörpersysteme erschwert haben. Allerdings sind viele der mĂ€chtigen analytischen und numerischen Methoden der Gleichgewichtsphysik in einem Nichtgleichgewichtskontext nicht anwendbar, was vor allem auf die zunehmende Vermischung der Energieskalen aufgrund des externen Antriebs zurĂŒckzufĂŒhren ist. Daher ist es wichtig, ein tieferes theoretisches VerstĂ€ndnis von Systemen fernab des Gleichgewichts zu erlangen. Besonders interessant sind in diesem Zusammenhang getriebene dissipative Systeme, da sie die Ausbildung von stationĂ€ren NichtgleichgewichtszustĂ€nden ermöglichen, zwischen denen es zu dynamischen PhasenĂŒbergĂ€ngen kommen kann. In dieser Dissertation stellen wir theoretische Ergebnisse zu angetriebenen Quantenspinsystemen vor, die zum VerstĂ€ndnis der verschiedenen Mechanismen zur Steuerung solcher NichtgleichgewichtsphasenĂŒbergĂ€nge beitragen. Dies ist von großem Interesse, da es den Weg zur optischen Kontrolle der Eigenschaften von QuantenvielkörperzustĂ€nden ebnet. Eine numerische Methode, die nachweislich zuverlĂ€ssige Ergebnisse fĂŒr periodisch angetriebene, eindimensionale Systeme liefert, ist die zeitabhĂ€ngige Dichte-Matrix-Renormierungsgruppe (t-DMRG). Wir nutzen t-DMRG-Berechnungen um die Dynamik einer Quantenkette, die einen PhasenĂŒbergang zwischen einer Luttinger-FlĂŒssigkeit und einer Ladungsdichtewelle aufweist, sowohl unter kontinuierlichem als auch unter gepulstem Treiben zu simulieren. Dabei wird deutlich, dass es unter dem Treiben zu einer lichtkegelförmigen Ausbreitung von Dichte-Dichte-Korrelationen mit Floquet-modelierter Ausbreitungsgeschwindigkeit kommt. Auf großen Zeitskalen fĂŒhrt das verwendete kontinuierliche, nicht-resonante, hochfrequente Antriebsprotokoll zur Bildung eines stationĂ€ren Floquet-Zustandes mit vernachlĂ€ssigbarer Aufheizung. Eine AuffĂ€lligkeit ist die Bildung einer DiskontinuitĂ€t in Form eines Knicks am Rande des Lichtkegels. Dieser Knick weist Ähnlichkeiten mit der DiskontinuitĂ€t auf, die analytisch in gequenchten Systemen nachgewiesen wurde, was darauf hindeutet, dass dynamische QuantenkritikalitĂ€t in Floquet-getriebenen Systemen erreicht werden kann. Diese Ergebnisse stehen in direktem Zusammenhang mit dem Forschungsgebiet der zeitaufgelösten Spektroskopie, die darauf abzielt, Korrelationen in niedrigdimensionalen Materialien zu messen. Emergente NichtgleichgewichtszustĂ€nde der Materie zeichnen sich durch eine hohe VielteilchenverschrĂ€nkung aus, die einen erheblichen Einfluss auf das makroskopische Verhalten von Systemen bei endlichen Temperaturen haben kann. Dies macht die Identifizierung von VerschrĂ€nkungen in angetriebenen Quantensystemen zu einem wichtigen Forschungsgegenstand. Eine GrĂ¶ĂŸe die nachweislich dynamische VerschrĂ€nkungen bezeugt, ist die quanten Fischer information (QFI), die zur Unterscheidung von KritikalitĂ€t bei endlichen Temperaturen und thermischem Verhalten verwendet werden kann. Wir untersuchen die QFI in einer eindimensionalen XXZ-Quantenkette, deren Wechselwirkungen sprunghaft verstĂ€rkt werden, und zeigen einen Übergang von adiabatischer zu nichtadiabatischer Dynamik. Um kritisches Verhalten in einem angetriebenen dissipativen Spinsystem mit wechselwirkenden Spinwellen zu identifizieren, untersuchen wir die stationĂ€ren NichtgleichgewichtszustĂ€nde eines zweidimensionalen Heisenberg-Antiferromagneten, der durch einen Hochfrequenzlaser getrieben wird und an ein Reservoir gekoppelt ist. Das Zusammenspiel zwischen Wechselwirkungen und dem Energiefluss aufgrund von Antrieb und Dissipation ist entscheidend fĂŒr die Beschreibung des resultierenden Systems stationĂ€rer ZustĂ€nde. Wir zeigen einen nicht-thermischen Übergang, der durch eine qualitative Änderung der Magnonenverteilung charakterisiert ist. Bei niedrigem Antrieb zeigt das Quantensystem subthermisches Verhalten, wĂ€hrend ein starkes Treiben zu einer verallgemeinerten Bose-Einstein-Form mit einem nicht-verschwindenden Kondensatanteil fĂŒhrt. Der Übergang zwischen diesen Phasen zeigt kritisches Skalierungverhalten, sowohl in statischen als auch in dynamischen MessgrĂ¶ĂŸen. Eine Analyse der linearisierten kinetischen Gleichung und ihres Eigenwertspektrums erlaubt RĂŒckschlĂŒsse auf die Rolle der hydrodynamischen langsamen Moden im kritischen Verhalten nahe dem Übergangspunkt. Das VerstĂ€ndnis der Mechanismen, die die Nichtgleichgewichtsdynamik und das kritische Verhalten des Spinsystems bestimmen, könnte dazu beitragen neue, nicht-thermische Wege zur Kontrolle von getriebenen Quantenmaterialien zu verstehen

    Nonequilibrium materials engineering in correlated systems via light-matter coupling

    Get PDF
    The investigation of nonequilibrium phenomena in strongly correlated systems is an intense and increasingly important field of research, both from a theoretical and from an experimental perspective. Experimental advances regarding the creation of ultrashort laser pulses and large field intensities are making it feasible to avoid the decoherences that historically have made the dynamics in driven solid state systems hard to access. However, many of the powerful analytical and numerical equilibrium methods are not applicable in a nonequilibrium setup, largely because of the increasing mixing of energy scales due to the external driving. It is therefore essential to gain a deeper theoretical understanding of systems far from equilibrium. In particular, driven dissipative systems allow for the formation of nonequilibrium steady states and the possibility of phase transitions between them. Here, we present theoretical results on driven quantum spin systems that help to gain an understanding of the different control knobs for driving such nonequilibrium phase transitions. This is of great interest because it paves the way to optically control the properties of quantum many body states. A numerical method that has been shown to generate reliable results for periodically driven, one dimensional systems is the time-dependent density matrix renormalization group (t-DMRG). By simulating the dynamics of a quantum chain with Luttinger liquid and charge-density wave phases under both continous and pulsed laser driving with t-DMRG calculations, we show that the drive causes a light-cone spreading of density-density correlations with a Floquet-engineered propagation velocity through the system. At large time scales, the employed continuous, off-resonant, large frequency driving protocol leads to the formation of a Floquet steady state with negligible heating. Strikingly, the formation of a discontinuity in form of a kink at the edge of the light cone is observed. This kink shows similarities with the discontinuity that has been analytically shown to exist in quenched systems, which indicates that dynamical quantum criticality can be achieved in Floquet-driven systems. These results directly connect to the field of time-resolved spectroscopy, aiming at measuring correlations in strongly correlated materials. Emergent nonequilibrium states of matter prominently feature a high degree of many-body entanglement, which may have a significant effect on the macroscopic finite-temperature behavior of the systems in question. This makes the identification of entanglement in driven quantum systems an important area of research. A quantity that has been shown to act as an entanglement witness is the Quantum Fisher Information (QFI), which can be used to discriminate criticality at nonzero temperatures from thermal behavior. We investigate the QFI in an interaction-quenched one dimensional XXZ quantum chain, transitioning from from adiabatic to nonadiabatic dynamics. In order to identify critical behavior in a driven-dissipative spin system with magnon interactions we study the nonequilibrium steady states of a two-dimensional Heisenberg antiferromagnet which is driven by a high frequency laser and coupled to a reservoir. The interplay between interactions and the flow of energy due to to drive and dissipation is crucial to describe the resulting steady state system. We demonstrate a nonthermal transition that is characterized by a qualitative change in the magnon distribution, from subthermal at low drive to a generalized Bose-Einstein form including a nonvanishing condensate fraction at high drive and find that this transition shows static and dynamical critical scaling. An analysis of the linearized kinetic equation and its spectrum of eigenvalues allows us to draw conclusions about the role of hydrodynamic slow modes in the critical behavior near the transition point. Understanding these mechanisms that determine the critical behavior could help understand nonthermal pathways for controlling emergent properties of driven quantum materials.Die Untersuchung von Nicht-GleichgewichtsphĂ€nomenen in stark korrelierten Systemen ist ein breites und zunehmend an Bedeutung gewinnendes Forschungsgebiet, sowohl aus theoretischer als auch aus experimenteller Sicht. Experimentelle Fortschritte bei der Erzeugung ultrakurzer Laserpulse und großer FeldstĂ€rken machen es möglich, DekohĂ€renzen zu vermeiden, die in der Vergangenheit die Messung der Dynamik angetriebener Festkörpersysteme erschwert haben. Allerdings sind viele der mĂ€chtigen analytischen und numerischen Methoden der Gleichgewichtsphysik in einem Nichtgleichgewichtskontext nicht anwendbar, was vor allem auf die zunehmende Vermischung der Energieskalen aufgrund des externen Antriebs zurĂŒckzufĂŒhren ist. Daher ist es wichtig, ein tieferes theoretisches VerstĂ€ndnis von Systemen fernab des Gleichgewichts zu erlangen. Besonders interessant sind in diesem Zusammenhang getriebene dissipative Systeme, da sie die Ausbildung von stationĂ€ren NichtgleichgewichtszustĂ€nden ermöglichen, zwischen denen es zu dynamischen PhasenĂŒbergĂ€ngen kommen kann. In dieser Dissertation stellen wir theoretische Ergebnisse zu angetriebenen Quantenspinsystemen vor, die zum VerstĂ€ndnis der verschiedenen Mechanismen zur Steuerung solcher NichtgleichgewichtsphasenĂŒbergĂ€nge beitragen. Dies ist von großem Interesse, da es den Weg zur optischen Kontrolle der Eigenschaften von QuantenvielkörperzustĂ€nden ebnet. Eine numerische Methode, die nachweislich zuverlĂ€ssige Ergebnisse fĂŒr periodisch angetriebene, eindimensionale Systeme liefert, ist die zeitabhĂ€ngige Dichte-Matrix-Renormierungsgruppe (t-DMRG). Wir nutzen t-DMRG-Berechnungen um die Dynamik einer Quantenkette, die einen PhasenĂŒbergang zwischen einer Luttinger-FlĂŒssigkeit und einer Ladungsdichtewelle aufweist, sowohl unter kontinuierlichem als auch unter gepulstem Treiben zu simulieren. Dabei wird deutlich, dass es unter dem Treiben zu einer lichtkegelförmigen Ausbreitung von Dichte-Dichte-Korrelationen mit Floquet-modelierter Ausbreitungsgeschwindigkeit kommt. Auf großen Zeitskalen fĂŒhrt das verwendete kontinuierliche, nicht-resonante, hochfrequente Antriebsprotokoll zur Bildung eines stationĂ€ren Floquet-Zustandes mit vernachlĂ€ssigbarer Aufheizung. Eine AuffĂ€lligkeit ist die Bildung einer DiskontinuitĂ€t in Form eines Knicks am Rande des Lichtkegels. Dieser Knick weist Ähnlichkeiten mit der DiskontinuitĂ€t auf, die analytisch in gequenchten Systemen nachgewiesen wurde, was darauf hindeutet, dass dynamische QuantenkritikalitĂ€t in Floquet-getriebenen Systemen erreicht werden kann. Diese Ergebnisse stehen in direktem Zusammenhang mit dem Forschungsgebiet der zeitaufgelösten Spektroskopie, die darauf abzielt, Korrelationen in niedrigdimensionalen Materialien zu messen. Emergente NichtgleichgewichtszustĂ€nde der Materie zeichnen sich durch eine hohe VielteilchenverschrĂ€nkung aus, die einen erheblichen Einfluss auf das makroskopische Verhalten von Systemen bei endlichen Temperaturen haben kann. Dies macht die Identifizierung von VerschrĂ€nkungen in angetriebenen Quantensystemen zu einem wichtigen Forschungsgegenstand. Eine GrĂ¶ĂŸe die nachweislich dynamische VerschrĂ€nkungen bezeugt, ist die quanten Fischer information (QFI), die zur Unterscheidung von KritikalitĂ€t bei endlichen Temperaturen und thermischem Verhalten verwendet werden kann. Wir untersuchen die QFI in einer eindimensionalen XXZ-Quantenkette, deren Wechselwirkungen sprunghaft verstĂ€rkt werden, und zeigen einen Übergang von adiabatischer zu nichtadiabatischer Dynamik. Um kritisches Verhalten in einem angetriebenen dissipativen Spinsystem mit wechselwirkenden Spinwellen zu identifizieren, untersuchen wir die stationĂ€ren NichtgleichgewichtszustĂ€nde eines zweidimensionalen Heisenberg-Antiferromagneten, der durch einen Hochfrequenzlaser getrieben wird und an ein Reservoir gekoppelt ist. Das Zusammenspiel zwischen Wechselwirkungen und dem Energiefluss aufgrund von Antrieb und Dissipation ist entscheidend fĂŒr die Beschreibung des resultierenden Systems stationĂ€rer ZustĂ€nde. Wir zeigen einen nicht-thermischen Übergang, der durch eine qualitative Änderung der Magnonenverteilung charakterisiert ist. Bei niedrigem Antrieb zeigt das Quantensystem subthermisches Verhalten, wĂ€hrend ein starkes Treiben zu einer verallgemeinerten Bose-Einstein-Form mit einem nicht-verschwindenden Kondensatanteil fĂŒhrt. Der Übergang zwischen diesen Phasen zeigt kritisches Skalierungverhalten, sowohl in statischen als auch in dynamischen MessgrĂ¶ĂŸen. Eine Analyse der linearisierten kinetischen Gleichung und ihres Eigenwertspektrums erlaubt RĂŒckschlĂŒsse auf die Rolle der hydrodynamischen langsamen Moden im kritischen Verhalten nahe dem Übergangspunkt. Das VerstĂ€ndnis der Mechanismen, die die Nichtgleichgewichtsdynamik und das kritische Verhalten des Spinsystems bestimmen, könnte dazu beitragen neue, nicht-thermische Wege zur Kontrolle von getriebenen Quantenmaterialien zu verstehen

    Nonequilibrium phase transition in a driven-dissipative quantum antiferromagnet

    Get PDF
    A deeper theoretical understanding of driven-dissipative interacting systems and their nonequilibrium phase transitions is essential both to advance our fundamental physics understanding and to harness technological opportunities arising from optically controlled quantum many-body states. This paper provides a numerical study of dynamical phases and the transitions between them in the nonequilibrium steady state of the prototypical two-dimensional Heisenberg antiferromagnet with drive and dissipation. We demonstrate a nonthermal transition that is characterized by a qualitative change in the magnon distribution from subthermal at low drive to a generalized Bose-Einstein form including a nonvanishing condensate fraction at high drive. A finite-size analysis reveals static and dynamical critical scaling at the transition, with a discontinuous slope of the magnon number versus driving field strength and critical slowing down at the transition point. Implications for experiments on quantum materials and polariton condensates are discussed

    Observed spatial variability of boundary-layer turbulence over flat, heterogeneous terrain

    Get PDF
    In spring 2013, extensive measurements with multiple Doppler lidar systems were performed. The instruments were arranged in a triangle with edge lengths of about 3 km in a moderately flat, agriculturally used terrain. For six mostly cloud-free convective days, vertical velocity variance profiles were compared for the three locations. On the average over all considered cases, differences between variances at different sites were about three times higher than between those derived from measurements by different lidars at the same site. For all investigated averaging periods between 10 min and 4 h, the differences were not significant on the average when considering the statistical error. However, statistically significant spatial differences were found in several individual cases. These could not be explained by the existing surface heterogeneity. In some cases, nearby energy balance stations provided surface fluxes that were not suitable for scaling the variance profiles. Weighted-averaged values proved to be more applicable, but even then, the scaled profiles showed a large scatter for each location. Therefore, it must be assumed that the intensity of turbulence is not always well-determined by the local heat supply at the Earth\u27s surface. Instead, a certain dependency of turbulence characteristics on mean wind speed and direction was found: thermals were detected that travelled from one site to the other with the mean wind when the travel time was shorter than the large-eddy turnover time. At the same time, no thermals passed for more than two hours at a third site that was located perpendicular to the mean wind direction in relation to the first two sites. Subsidence prevailing in the surroundings of thermals advected with the mean wind can thus partly explain significant spatial variance differences existing for several hours

    Witnessing nonequilibrium entanglement dynamics in a strongly correlated fermionic chain

    Get PDF
    Many-body entanglement in condensed matter systems can be diagnosed from equilibrium response functions through the use of entanglement witnesses and operator-specific quantum bounds. Here, we investigate the applicability of this approach for detecting entangled states in quantum systems driven out of equilibrium. We use a multipartite entanglement witness, the quantum Fisher information, to study the dynamics of a paradigmatic fermion chain undergoing a time-dependent change of the Coulomb interaction. Our results show that the quantum Fisher information is able to witness distinct signatures of multipartite entanglement both near and far from equilibrium that are robust against decoherence. We discuss implications of these findings for probing entanglement in light-driven quantum materials with time-resolved optical and x-ray scattering methods

    Observed spatiotemporal variability of boundary-layer turbulence over flat, heterogeneous terrain

    Get PDF
    In the spring of 2013, extensive measurements with multiple Doppler lidar systems were performed. The instruments were arranged in a triangle with edge lengths of about 3 km in a moderately flat, agriculturally used terrain in northwestern Germany. For 6 mostly cloud-free convective days, vertical velocity variance profiles were calculated. Weighted-averaged surface fluxes proved to be more appropriate than data from individual sites for scaling the variance profiles; but even then, the scatter of profiles was mostly larger than the statistical error. The scatter could not be explained by mean wind speed or stability, whereas time periods with significantly increased variance contained broader thermals. Periods with an elevated maximum of the variance profiles could also be related to broad thermals. Moreover, statistically significant spatial differences of variance were found. They were not influenced by the existing surface heterogeneity. Instead, thermals were preserved between two sites when the travel time was shorter than the large-eddy turnover time. At the same time, no thermals passed for more than 2 h at a third site that was located perpendicular to the mean wind direction in relation to the first two sites. Organized structures of turbulence with subsidence prevailing in the surroundings of thermals can thus partly explain significant spatial variance differences existing for several hours. Therefore, the representativeness of individual variance profiles derived from measurements at a single site cannot be assumed

    Floquet-engineered light-cone spreading of correlations in a driven quantum chain

    No full text
    We investigate the light-cone-like spread of electronic correlations in a laser-driven quantum chain. Using the time-dependent density matrix renormalization group, we show that high-frequency driving leads to a Floquet-engineered spread velocity that determines the enhancement of density-density correlations when the ratio of potential and kinetic energies is effectively increased both by either a continuous or a pulsed drive. For large times we numerically show the existence of a Floquet steady state at not too long distances on the lattice with minimal heating. Intriguingly, we find a discontinuity of dynamically scaled correlations at the edge of the light cone, akin to the discontinuity known to exist for quantum quenches in Luttinger liquids. Our work demonstrates the potential of pump-probe experiments for investigating light-induced correlations in low-dimensional materials and puts quantitative speed limits on the manipulation of long-ranged correlations through Floquet engineering

    Fluid Induced Particle Size Segregation in Sheared Granular Assemblies

    Full text link
    We perform a two-dimensional molecular-dynamics study of a model for sheared bidisperse granular systems under conditions of simple shear and Poiseuille flow. We propose a mechanism for particle-size segregation based on the observation that segregation occurs if the viscous length scale introduced by a liquid in the system is smaller than of the order of the particle size. We show that the ratio of shear rate to viscosity must be small if one wants to find size segregation. In this case the particles in the system arrange themselves in bands of big and small particles oriented along the direction of the flow. Similarly, in Poiseuille flow we find the formation of particle bands. Here, in addition, the variety of time scales in the flow leads to an aggregation of particles in the zones of low shear rate and can suppress size segregation in these regions. The results have been verified against simulations using a full Navier-Stokes description for the liquid.Comment: 11 pages, REVTEX format, ps figures compressed uuencoded separately or by e-mail from [email protected]. A postscript version of the paper will be available from http://www.ica1.uni-stuttgart.de/local/WWW/papers/papers.htm
    • 

    corecore