80 research outputs found

    FIWARE Open Source Standard Platform in Smart Farming - A Review

    Full text link
    [EN] FIWARE is an open source platform for the deployment of Internet of Things (IoT) applications, driven by European Union and managed by FIWARE Foundation. Recently, FIWARE Foundation has launched his new product Agricolus, which focus on Smart Farming and it uses FIWARE infrastructure. Agricolus manages to bring Hardware and Software together in a decision-making process that support farming activities and offers a "plug and play" interface for precision agriculture. This is encompassed by the phenomenon of Smart Farming, which is a development that take advantage of the use of Information Communication Technologies (ICT) in the daily farm management. This review aims to gain insight into the state-of-the-art of FIWARE in Smart Farming and identify the components of Agricolus in comparison with essential FIWARE architecture.This research has been carried out in the framework of the project "Development of an integrated maturity model for agility, resilience and gender perspective in supply chains (MoMARGE). Application to the agricultural sector." Ref. GV/2017/025 funded by the Generalitat Valenciana.Rodríguez-Sánchez, MDLÁ.; Cuenca, L.; Ortiz Bas, Á. (2018). FIWARE Open Source Standard Platform in Smart Farming - A Review. IFIP Advances in Information and Communication Technology. 534:581-589. https://doi.org/10.1007/978-3-319-99127-6_50S581589534Robert, P.C.: Precision agriculture: research needs and status in the USA. In: Stafford, J.V. (ed.) Proceedings of the 2nd European Conference on Precision Agriculture, Part 1, pp. 19–33. Academic Press, SCI/Sheffield (1999)Ge, Y., Thomasson, J.A., Sui, R.: Remote sensing of soil properties in precision agriculture: a review. Front. Earth Sci. 5(3), 229–238 (2011)Sundmaeker, H., Verdouw, C., Wolfert, S., Pérez Freire L.: Internet of food and farm 2020. In: Vermesan, O., Friess, P. (eds.) Digitising the Industry - Internet of Things Connecting Physical, Digital and Virtual Worlds, pp. 129–151. River Publishers, Gistrup/Delft (2016)Lin, J., Liu, C.: Monitoring system based on wireless sensor network and a SocC platform in precision agriculture. In: Proceedings of the International Conference on Communication Technology (ICCT), Hangzhou, pp. 101–104 (2008)Kaewmard, N., Saiyod, S.: Sensor data collection and irrigation control on vegetable crop using smart phone and wireless sensor networks for smart farm. In: Proceedings of the International Conference on Wireless Sensors (ICWiSE), pp. 106–112 (2014)FIWARE. https://www.fiware.org/Future Internet Private Public Partnership (FI-PPP). https://www.fi-ppp.eu/Agricolus. https://www.agricolus.comFIWARE Generic Enablers. http://edu.fiware.org/FIWARE Catalogue. https://catalogue.fiware.org/enablersKamilaris, A., Gao, F., Prenafeta-Boldu, F.X., Ali, M.I.: Agri-IoT: a semantic framework for Internet of Things-enabled smart farming applications. In: IEEE 3rd World Forum on Internet of Things, WF-IoT 2016, pp. 442–447 (2017)López-Riquelme, J.A., Pavón-Pulido, N., Navarro-Hellín, H., Soto-Valles, F., Torres-Sánchez, R.: A software architecture based on FIWARE cloud for precision agriculture. Agric. Water Manag. 183, 123–135 (2017)Martínez, R., Pastor, J.Á., Álvarez, B., Iborra, A.: A testbed to evaluate the FIWARE-based IoT platform in the domain of precision agriculture. Sensors (Switzerland), 16(11) (2016)Pesonen, L.A., et al.: Cropinfra - an internet-based service infrastructure to support crop production in future farms. Biosys. Eng. 120, 92–101 (2014)Barmpounakis, S., et al.: Management and control applications in agriculture domain via a future internet business-to-business platform. Inf. Process. Agric. 2(1), 51–63 (2015)Kaloxylos, A., et al.: Farm management systems and the future internet era. Comput. Electron. Agric. 89, 130–144 (2012)Kaloxylos, A., et al.: A cloud-based farm management system: architecture and implementation. Comput. Electron. Agric. 100, 168–179 (2014)Ryu, M., Yun, J., Miao, T., Ahn, I.Y., Choi, S.C., Kim, J.: Design and implementation of a connected farm for smart farming system. In: 2015 IEEE SENSORS Proceedings, pp. 1–4 (2015)Layton, A.W., Balmos, A.D., Sabpisal, S., Ault, A., Krogmeier, J.V., Buckmaster, D.: ISOBlue: an open source project to bring agricultural machinery data into the cloud, Montreal, 13 July–16 July 2014. American Society of Agricultural and Biological Engineers (2014)SmartAgriFood. http://smartagrifood.com/FIWARE MarketPlace. https://marketplace.fiware.orgFIWARE iHubs. https://www.fiware.org/community/fiware-ihubs/Agricolus in FIWARE MarketPlace. https://marketplace.fiware.org/pages/solutions/2ec3c741ef4dd8f83bab4e83Implementation example of Agricolus. http://www.libelium.com/increasing-tobacco-crops-quality-by-climatic-conditions-control/FIspace. https://www.fispace.eu/whatisfispace.htm

    D4.2 Final report on trade-off investigations

    Full text link
    Research activities in METIS WP4 include several as pects related to the network-level of future wireless communication networks. Thereby, a large variety of scenarios is considered and solutions are proposed to serve the needs envis ioned for the year 2020 and beyond. This document provides vital findings about several trade-offs that need to be leveraged when designing future network-level solutions. In more detail, it elaborates on the following trade- offs: • Complexity vs. Performance improvement • Centralized vs. Decentralized • Long time-scale vs. Short time-scale • Information Interflow vs. Throughput/Mobility enha ncement • Energy Efficiency vs. Network Coverage and Capacity Outlining the advantages and disadvantages in each trade-off, this document serves as a guideline for the application of different network-level solutions in different situations and therefore greatly assists in the design of future communication network architectures.Aydin, O.; Ren, Z.; Bostov, M.; Lakshmana, TR.; Sui, Y.; Svensson, T.; Sun, W.... (2014). D4.2 Final report on trade-off investigations. http://hdl.handle.net/10251/7676

    Signalling channel handling in Wireless ATM Networks

    No full text
    The introduction of ATM in Wireless CPN environments (WA TM) necessitates the design of mobility related protocols, since the existing versions of B-ISDN signalling (ITU-T Q.2931, ATMF UNI 3. 1) do not provide the means for terminal mobility. Such protocols can be deployed either as extensions to the standard signalling capabilities or as individual solutions that have little or no impact on existing infrastructures (switches, signalling software, etc.). In this paper, after presenting a WATM architecture, we study the problem of the switching/rerouting of the signalling connections that needs to be performed whenever a mobile terminal crosses cell boundaries (handover, location update). Registration and forward hard handover algorithms are proposed

    Mobility Management and Control protocol for wireless ATM networks

    No full text
    The introduction of wireless ATM in customer premises network environments necessitates the design of mobility signaling protocols, sir versions of B-ISDN since the existing deployed either as signaling do not support terminal mobility. Such protocols can extensions to the standard signaling capabilities, or as individual solutions that have little or no impact on existing infrastructures (switches, signaling software, etc.). AWATM architecture that adopts the latter approach is presented. After a discussion of the problems encountered in the integration of wireless networking and B-ISDN ATM technologies, a Mobility Management and Control (MMC) protocol is proposed Finally, in the framework of the proposed MMC protocol, algorithms for implementing mobility procedures (handover and registration) are described

    Mobility management and control protocol for wireless ATM networks

    No full text

    An efficient QoS scheme for mobile hosts

    No full text
    Mobile hosts utilize Mobile IP to retain connectivity while roaming in various networks, and acquire new IP addresses through the mechanisms Mobile IP supports. Today one of the most demanding application requirements is QoS support. RSVP the, protocol implementation of the IETF Integrated Services Architecture. cannot handle hosts that change their IP addresses amidst a connection lifetime and thus, must re-establish any given reservation states. To overcome this limitation, we propose the adoption of a mobility management scheme, that maintains it single contact IP address throughout the mobility session. Furthermore. we introduce RSVP Mobility Proxy, an enhanced RSVP enabled border router to deal with QoS signaling at any mobility related network topology modification
    corecore