56 research outputs found

    The relativistically invariant expansion of a scalar function on imaginary Lobachevski space

    Get PDF
    Using the previous analysis of Gel'fand and Graev a new relativistically invariant expansion of a scalar function on three-dimensional imaginary Lobachevski space L3(I) is given. The coordinate system used corresponds to the horospherical reduction SO(3,1) E2 SO(2) and covers all of L3(I)

    Complete sets of functions for perturbations of Robertson–Walker cosmologies and spin 1 equations in Robertson–Walker-type space-times

    Get PDF
    Crucial to a knowledge of the perturbations of Robertson–Walker cosmological models are complete sets of functions with which to expand such perturbations. For the open Robertson–Walker cosmology an answer to this question is given. In addition some observations concerning explicit solution by separation of variables of wave equations for spin 1 in a Riemannian space having an infinitesimal line element of which the Robertson–Walker models are a special case are made

    Models of q-algebra representations: q-integral transforms and "addition theorems''

    Get PDF
    In his classic book on group representations and special functions Vilenkin studied the matrix elements of irreducible representations of the Euclidean and oscillator Lie algebras with respect to countable bases of eigenfunctions of the Cartan subalgebras, and he computed the summation identities for Bessel functions and Laguerre polynomials associated with the addition theorems for these matrix elements. He also studied matrix elements of the pseudo-Euclidean and pseudo-oscillator algebras with respect to the continuum bases of generalized eigenfunctions of the Cartan subalgebras of these Lie algebras and this resulted in realizations of the addition theorems for the matrix elements as integral transform identities for Bessel functions and for confluent hypergeometric functions. Here we work out q analogs of these results in which the usual exponential function mapping from the Lie algebra to the Lie group is replaced by the q-exponential mappings Eq and eq. This study of representations of the Euclidean quantum algebra and the q-oscillator algebra (not a quantum algebra) leads to summation, integral transform, and q-integral transform identities for q analogs of the Bessel and confluent hypergeometric functions, extending the results of Vilenkin for the q=1 case

    Lie theory and separation of variables. 11. The EPD equation

    Get PDF
    We show that the Euler–Poisson–Darboux equation {∂tt -∂rr – [(2m+1)/r]∂r}Ө=0 separates in exactly nine coordinate systems corresponding to nine orbits of symmetric second-order operators in the enveloping algebra of SL(2,R), the symmetry group of this equation. We employ techniques developed in earlier papers from this series and use the representation theory of SL(2,R) to derive special function identities relating the separated solutions. We also show that the complex EPD equation separates in exactly five coordinate systems corresponding to five orbits of symmetric second-order operators in the enveloping algebra of SL(2,C)

    Complete sets of functions for perturbations of Robertson Walker cosmologies

    Get PDF
    Crucial to a knowledge of the perturbations of Robertson Walker cosmological models is a knowledge of complete sets of functions with which to expand such perturbations. For the open Robertson Walker cosmology, this question will be completely answered. In addition, some observations will be made concerning explicit solution by separation of variables of wave equations for spin s in a Riemannan space having an infinitesmal line element of which the Robertson Walker models are a special case

    Series solutions for the Dirac equation in Kerr–Newman space-time

    Get PDF
    The Dirac equation is solved for an electron in a Kerr–Newman geometry using an adaptation of the procedure of Chandrasekhar. The corresponding eigenfunctions obtained can be represented as series of Jacobi polynomials. The spectrum of eigenvalues can be calculated using continued fraction techniques. Representations for the eigenvalues and eigenfunctions are obtained for various ranges of the parameters appearing in the Kerr–Newman metric. Some comments concerning the bag model of nucleons are made

    Jacobi elliptic coordinates, functions of Heun and Lame type and the Niven transform

    Get PDF
    Lame and Heun functions arise via separation of the Laplace equation in general Jacobi ellipsoidal or conical coordinates. In contrast to hypergeometric functions that also arise via variable separation in the Laplace equation, Lame and Heun functions have received relatively little attention, since they are rather intractable. Nonetheless functions of Heun type do have remarkable properties, as was pointed out in the classical book \Modern Analysis" by Whittaker and Watson who devoted an entire chapter to the subject. Unfortunately the beautiful identities appearing in this chapter have received little notice, probably because the methods of proof seemed obscure. In this paper we apply the modern operator characterization of variable separation and exploit the conformal symmetry of the Laplace equation to obtain product identities for Heun type functions. We interpret the Niven transform as an intertwining operator under the action of the conformal group. We give simple operator derivations of some of the basic formulas presented by Whittaker and Watson and then show how to generalize their results to more complicated situations and to higher dimensions

    Structure Theory for Extended Kepler-Coulomb 3D Classical Superintegrable Systems

    Get PDF
    The classical Kepler-Coulomb system in 3 dimensions is well known to be 2nd order superintegrable, with a symmetry algebra that closes polynomially under Poisson brackets. This polynomial closure is typical for 2nd order superintegrable systems in 2D and for 2nd order systems in 3D with nondegenerate (4-parameter) potentials. However the degenerate 3-parameter potential for the 3D extended Kepler-Coulomb system (also 2nd order superintegrable) is an exception, as its quadratic symmetry algebra doesn't close polynomially. The 3D 4-parameter potential for the extended Kepler-Coulomb system is not even 2nd order superintegrable. However, Verrier and Evans (2008) showed it was 4th order superintegrable, and Tanoudis and Daskaloyannis (2011) showed that in the quantum case, if a second 4th order symmetry is added to the generators, the double commutators in the symmetry algebra close polynomially. Here, based on the Tremblay, Turbiner and Winternitz construction, we consider an infinite class of classical extended Kepler-Coulomb 3- and 4-parameter systems indexed by a pair of rational numbers (k1,k2)(k_1,k_2) and reducing to the usual systems when k1=k2=1k_1=k_2=1. We show these systems to be superintegrable of arbitrarily high order and work out explicitly the structure of the symmetry algebras determined by the 5 basis generators we have constructed. We demonstrate that the symmetry algebras close rationally; only for systems admitting extra discrete symmetries is polynomial closure achieved. Underlying the structure theory is the existence of raising and lowering constants of the motion, not themselves polynomials in the momenta, that can be employed to construct the polynomial symmetries and their structure relations

    Two-Variable Wilson Polynomials and the Generic Superintegrable System on the 3-Sphere

    Get PDF
    We show that the symmetry operators for the quantum superintegrable system on the 3-sphere with generic 4-parameter potential form a closed quadratic algebra with 6 linearly independent generators that closes at order 6 (as differential operators). Further there is an algebraic relation at order 8 expressing the fact that there are only 5 algebraically independent generators. We work out the details of modeling physically relevant irreducible representations of the quadratic algebra in terms of divided difference operators in two variables. We determine several ON bases for this model including spherical and cylindrical bases. These bases are expressed in terms of two variable Wilson and Racah polynomials with arbitrary parameters, as defined by Tratnik. The generators for the quadratic algebra are expressed in terms of recurrence operators for the one-variable Wilson polynomials. The quadratic algebra structure breaks the degeneracy of the space of these polynomials. In an earlier paper the authors found a similar characterization of one variable Wilson and Racah polynomials in terms of irreducible representations of the quadratic algebra for the quantum superintegrable system on the 2-sphere with generic 3-parameter potential. This indicates a general relationship between 2nd order superintegrable systems and discrete orthogonal polynomials

    Integrability, Stäckel spaces, and rational potentials

    Get PDF
    For a variety of classical mechanical systems embeddable into flat space with Cartesian coordinates {xi} and for which the Hamilton–Jacobi equation can be solved via separation of variables in a particular curvalinear system {uj}, we answer the following question. When is the separable potential function v expressible as a polynomial (or as a rational function) in the defining coordinates {xi}? Many examples are given
    corecore