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Crucial to a knowledge of the perturbations of Robertson Walker cosmological models is a 
knowledge of complete sets of functions with which to expand such perturbations. For the 
open Robertson Walker cosmology, this question will be completely answered. In addition, 
some observations will be made concerning explicit solution by separation of variables of wave 
equations for spin s in a Riemannan space having an infinitesmal line element of which the 
Robertson Walker models are a special case. 

I. VECTOR AND TENSOR HARMONICS ON THREE- 
DIMENSIONAL SPACES OF CONSTANT RIEMANNIAN 
CURVATURE 

The original investigations of Lifshitz’ and Lifshitz and 
Khalatnikov’ into the gravitational stability of the Robert- 
son Walker (RW) isotropic cosmological models” demon- 
strated the utility of scalar, vector, and tensor harmonics in 
giving a complete description of small perturbations. In par- 
ticular these authors”’ showed that in the synchronous 
gauge all perturbations involving pressure, density, velocity, 
and metric fluctuations can be obtained once a complete set 
ofsuch functions is found for S, (three-dimensional sphere), 
E.3 (Euclidean three space), or H, (three-dimensional hy- 
perbolic space). The choice of three-dimensional manifold is 
determined by whether the closed, flat or open RW model is 
used. In the book by Landau and Lifshitz” a complete set of 
basis functions is derived for the conformally flat RW model 
in which a general tensor field h,, on E3 can be expanded in 
terms of three families of functions related to three-dimen- 
sional plane waves. 

( 1) Using the scalar function Q = e’“” the tensor func- 
tions 

Qaa = fg,pQ, Pap = (f~ ----y-- ;;;I) Q, P”, =O 
(1.1) 

are formed. These plane waves in the conformally flat model 
correspond to perturbations in which the gravitational field, 
velocity, and density vary. 

(2) With the transverse vector wave S = se’““, sn = 0 
the tensor Sap = n,S@ + n&S= satisfies S”, = 0. These 
waves correspond to perturbations in which the gravitation- 
al field and velocity vary but not the density. 

(3) The transverse tensor waves G,@ = U,Bein*r where 
the symmetric tensor Uas satisfies UaPn, = O,U,= = 0. 
These waves correspond to gravitational waves. 

The expansion of a symmetric tensor h, can then be 
given in terms of the three families of functions. In fact the 
various families can be invariantly characterized on E3 ac- 
cording to 

(1.2) A Was = (VJ’Vv,) W,,j = - n2 W+ 
where 

Wa, = Q+ Pap Sam Gap 

V”G,,, = 0, S”, = G”, = P”, = 0. 
Accordingly, this set of functions is but one choice of many 
possible complete sets of functions which could be obtained 
from the above equations, e.g., we could have chosen spheri- 
cal coordinates and expanded the components of the tensor 
h,, in a suitable set of spherical waves. As the underlying 
space in this case is E3 there is a six-dimensional isometry 
group E, consisting of translations and rotations. If we 
choose a basis of eigenvectors of the translation operators we 
recover the basis of plane waves discussed above. We note 
also that 

WasE* dr = 0, a0 (1.3) 

when WuB, @‘a@ are not from the same type and that each 
contributing tensor harmonic satisfies 

Pa W& = a, WDy = in, W&, (1.4) 

the P, being the translation generators of the six-dimension- 
al isometry group of E3 (the others being rotations). The 
analogous problem for the closed RW universe has been 
solved by Gerlach and Sengupta.4 A general tensor field on 
S, is expanded in terms of three families of functions in di- 
rect analogy with the flat space case. 

( 1) From scalar eigenfunctions of the Laplace operator 
Q on S,, viz., 

AQ= (VyVy)Q= - (n2 - 1)Q 

and for n an integer, the tensor fields 

Qao = -+ LDQ, 

Pap = l V,V,Q+ QaB, P”, = 0 (n2 - 1) 

are constructed. 

(1.5) 

(1.6) 
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(2) From vector eigenfunctions of the Laplace operator 
S, which are divergenceless, a tensor S,, = V,S, + V,S, 
can be constructed where 

AS, = - (n’- 2,S,, V?S, = 0. (1.7) 

( 3) From tensor eigenfunctions of the Laplace operator 
GeO, one can construct solutions that are symmetric, diver- 
genceless, traceless, 

AG,, = - (n’- 3)G,, VaGcls = 0, G”, = 0. 

Gerlach and Sengupta4 deveIoped a complete set of solu- 
tions for tensors of these types in terms of an angular mo- 
mentum basis. The results are correct but can be derived 
more neatly using a knowledge of the group representation 
theory of SO(4) acting on S,. In the open RW model the 
problem of a complete set of basis functions has, as far as we 
know, yet to be fully elucidated. In this article we explicitly 
compute a basis with which to expand second-order tensors 
h, on H, . We do this by using group theory and the inher- 
ent completeness results obtained by Naimark’ and Gelfand 
et~l.~ The manifold H3 is realized on the upper sheet of the 
two sheeted hyperboloid: 

+j - I.+ - ti - $ = l,YO > 1. (1.8) 

We choose spherical coordinates on the hyperboloid, viz., 

= (cash a,sinh a sin B cos 4, 

sinh a sin 8 sin &,sinh a cos 13) 

O<a<m, @@<n, 0<46<2rr, 

with line element 

(1.9) 

ds2 = da* + sinh2 a (d6J ’ + sin2 6 d@) . (1.10) 
In order to obtain a complete set of functions with which to 
expand second-order tensors we proceed as outlined above. 

( 1) Scalar functions Q that satisfy 

AQ= - (1 +p2)Q (1.11) 

are readily obtained. A complete set of such functions in the 
coordinate basis given above is 

@g./(a)D,:,(W,cb), o<p< co; J= 1,2, ..-; [MIa 
(1.12) 

where D Lv ( &0,4 1 is a matrix element of the rotation group 
in the Euler parametrization and @$; (a) the matrix ele- 
ments of the group element N3 (a) in an angular momentum 
basis for the unitary irreducible representation labeled by 
[m&p]. These functions and their properties are discussed in 
the Appendix. 

(2) Vector harmonics S, . The functions we require in 
this case must be eigenfunctions of A and divergenceless. 
Taking the choice of coordinates given in ( 1.9) we may write 

v= (v(J,v,,l/*,v3) 
= R, (c#)R, (@IN, (a)R, (a)R, (P)R, (?-‘I? 

= R, (tj)R, (em, (a)% (1.13) 

where ij = ( 1,O). Given a relativistic vector field 
S,,b = 0,1,2,3 the action on S, induced by the Lore&z 
group is 

T,S, (x) = D ‘a’2$“(g)sc(g- ‘x), (1.14) 
where 

x = rv,gfzS0(3,1),r>O. 
This is just the normal transformation law for relativistic 
fields. We define new vector fields by 

s;(g) = D ‘a’2kbc(g)sc (g - ‘Y). (1.15) 

These new fields transform according to 

T,S;, (g) = D ‘(12’ ,‘(gg’)S, (g’ - ‘g- ‘9 

= s;(gg’), (1.16) 

i.e., the individual components of the new vector fields S; 
transform independently. For the Euler parametrization of a 
Lorentz group element given in ( 1.13) we can write S; (g) 
as 

s;(g) = D ‘“2’JRGXG?~) 

R=R3(-y)R,(-P)RJ(-a). (1.17) 

The functions S;(g) transform under the Lorentz group 
according to the regular representation and are of the specif- 
ic form given in ( 1.13). From the decomposition ofthe regu- 
lar representation of the Lorentz group into its unitary irre- 
ducible components, a complete set of basis functions can be 
taken as 

D~~v;,(a,/3,,y)~~~(U)D~,(0,6,~) 
0<p< 00; m = 0, & 1, * 2, . . . ; 

J,Z= Irnj,frnl + 1, . . . . 

[Nfd, IMId IA I<min(LJ). (1.18) 

For functions of the form ( 1.17) the expansion functions for 
Sb (a,&$) are 

@$Yj (a)Di, (WV) 
o<p< 00; I,m = 0, & 1; J= Irnl,lml + 1, . . . ; 

IR lfmin(I,J),IM [<J. (1.19) 

If we choose a frame in space-time at each point we can, 
without loss of generality, choose the frame such that 
a = p = y = 0 and identify S, (a,&$) as our set of vector 
fields. The above expansion functions then form a complete 
set for a general vector field. Proca’s equation (and hence 
Maxwell’s equations) can be solved in these coordinates. 
Agamaliev, Atakashiev, and Verdiev’ have indicated how 
this can be done in Minkowski space-time. Returning to the 
problem on the manifold H3, we seek transverse fields corre- 
sponding to spin 1 as a result of the condition VQS, = 0. 
These functions can be obtained from considerations in Min- 
kowski space-time as follows. Consider a general point in 
Minkowski space-time as x = rv and choose the frame of 
one-forms: 
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e,,,, dx’ = dr, e, , ,,dx’ = r da, 

e (lb, dx’=+rsinha(dB+isinBdd), 

e ,,,,dx’=-$rsinha(d0-isinBd~$). (1.20) 

Then the components of the vector field S, referred to this 
frame, viz., S,, can be expanded in terms of the functions 

So =A (MGJ(a)D~,w (WV), 

S, =fi (r)~,‘l’;;(a)D~,UM~), m = 0, + 1, 

S, =fi crNf;“J ~d~~,UM,4), m = 0, + 1, 

S3 =f,(rNT ,J(aW- ,,cww, m =O, + 1, 
(1.21) 

the r dependence being chosen so as to obtain a complete set 
of functions on HJ. This is done by takingf, = 0 and choos- 
ing solutions of A’S, = (V’v, )Sb = 0 to have fZ (r) = r @. 
The vectors S, are then solutions of 

hs, = (V”V, )S, = - (p* + 2)S,, /? = 1,2,3, (1.22) 

and V?SP = 0, i.e., a suitable basis for transverse vector func- 
tions relative to the frame e Ca) ,a = 1,2,3 consists of the func- 
tions 

S, = Q>~o~‘(dD~,w%b), 

S2 = Q>/;&'(a)DLm4@, 

S, = cp:Z L(a)DJp ,,co,e,4), (1.23) 
for 

o<p< co; J= 1,2, . . . . p4I<J. 
Even and odd parity states can be constructed by realizing 
that the parity operation corresponds to the replacement 
Q+ - a and the matrix element functions a$)); (a) satisfy 

cP$;(a) = ( - l)‘-JqA;‘n( -a). (1.24) 
( 3 ) Tensor harmonics Gafi. The functions we require in 

this case must be eigenfunctions of A, traceless and divergen- 
celess. As with the case of vector harmonics we consider the 
relativistic tensor fields that transform under the Lorentz 
group according to 

T,G,(x) =D’0~3’bcd=(g)Gde(g-‘~). 
Defining new vector fields 

G;c(g) =D '0*3',xdc(g)Gdc (g- ‘Y), 
then these fields transform according to 

(1.25) 

( 1.26) 

T,,GI,k) =D ‘0~3’bcd’(gg’)Gd~ (g’ - ‘g- ‘Y) 

= GI,kg’). (1.27) 

Then writing 

G&(g) =D ‘0’3’bcde(R)Ged(a,e,~), (1.28) 

where R = R, ( - y)R, ( -J?)R3 ( - (r), we argue just as 
we did in the vector case that the suitable basis of expansion 
functions for functions G,, (a,&$) are as in ( 1.18), but with 

o<p< co; Z,m =0, * 1, * 2; J= (m(,(m( + 1, . . . ; 
lil I<min(Z,J),IMI(J. 

If we fix a frame as before by taking a = fl = y = 0, we can 
identify G,,(a,&J) as our set of tensor fields. In order to 
identify which components of Gcd (a,&$) enable the canoni- 
cal action of the rotation group to be realized we use the 
tetrad defined by ( 1.20). A suitable choice of tensor har- 
monics is 

G, =f3 WWX4DoJM(0,e,~), 

GII = [,j% (r)@%(a) +& (r)~~~(a)]D~M(O,e,~), 

Go, = [ (i)f3 (r)@%(a) - (l/\/z% (r)@%(a)] 

Go2 = Ci/fi)f, (WW’C ,J(a)DJ- ,M(O,&$), 

Go3 = (i/fi)f,(r)@f;“,(a)Dk,(0,8,4), 

G,, = Ci/\/z)f, (r)W’;(a)D{,(0,8,#), 

G,3 = Ci/fi)f, (r)@ST lJ(a)DJ- ,,,,(o,e,@, 
G3, =A (r)~F1,,(a)DJZMcO,e,~), 

% =A (r)@%(a)D~,(O,O,~), 

G13 = (i/3)G, - (I/&)G,,. (1.29) 

Here, m = 0, + 1, + 2 where appropriate. The functions 
x,i = 1,2,3 are chosen in such a way as to make the ortho- 
gonality relations for the functions G,, coincide with those 
conditions given in the Appendix. If we now seek diver- 
gence-free solutions that satisfy V”Gb, = 0 we take Go, = 0 
for all a. Then we obtain the two independent solutions by 
taking f, = r - ’ + @, which are solutions of 

AG,, = (VT’, )G,, = - (3 +p2)GD, 

and V”G,, = 0. A suitable basis of functions is 

(1.30) 

6, = J2/3WXW&,(0,8,~), 

G,, = (i/~)~~l”,(a)D:,(O,e,~), 

G,, = (ihQ)WY d4DJp dO,W), 

G,, = WF2J(a)D~2,(0,0,~), 
(1.31) 

G22 = %%W%,(0,~,4), 
G23 = ( - 1/2)G,,, m = + 2. 

By using the forms of the transverse vector fields S, and the 
scalar field Q, the traceless fields given previously and the 
recurrence formulas of the Appendix, all the traceless com- 
ponents in the expansion of the field h, are then given by 
allowing m = 0, + 1, _+ 2 in ( 1.3 1) . The remaining compo- 
nent having trace is simply Gas = g,@& (a) D ,“, (O,&$). 
This then gives the complete set of functions with which to 
expand a tensor on H3. 
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II. SEPARATION OF VARIABLES FOR 
GENERALLZATIONS OF ROBERTSON WALKER TYPE 
SPACE-TIMES 

In addition to the problem of determining complete sets 
of functions for the expansion of vector and tensor fields on 
H3 there has been considerable interest in the intrinsic char- 
acterization of solutions of the nonscalar equations of math- 
ematical physics. Considerable attention has been paid to 
this topic and we mention, in particular, studies of the Dirac 
equation’-’ and Maxwell’s equations,” In this section we 
discuss some extensions of the results of Kamran and Fels. ” 
These authors studied the metric given in local coordinates 
by the line element 

ds’= dt’- a’(t)(dx’+ b2(x,dy2 + c’(y)diL). (2.1) 
In the null frame specified by the one-forms 

e,,,, dx’ = ( l/\/z) (dt - a dx), 
e,,,, dx’= (l/vT)(dt+adx), 
e <*jr dx’ = ( l/v’7)ab(dy + ic dz), 
e 1311 dx’= (lNZ)ab(dy- icdz). (2.2) 

Kamran and Fels” demonstrated that the Dirac equation 
could be solved by a separation of variables procedure that is 
described by second-order symmetries. We demonstrate 
that Maxwell’s equations in their spinor and vector potential 
forms also admit separable solutions in direct analogy with 
what happens for the RW metrics, but that for spin s>2 the 
solution mechanism breaks down. The null frame can be 
intrinsically characterized by using the observation that the 
Riemannian space with line element (2.1) admits a valence 
two Killing-Yano tensor having nonzero component 
KY’ = l/(&c). If we look for simultaneous eigenvectors of 
K bc and its dual 1y i = ~~~~~~ “’ the corresponding eigen- 
vectors are 

I:,,, = (l,a,O,O), E;,, = (1, - @WI), 

f&t = (O,O,l,isin e), Zi3, = (O,O,l,isin e), 
(2.3) 

with eigenvalues given according to Table I. 
The null frame specified by the forms (2.2) is the natu- 

ral one for the spinorial form of Maxwell’s equations. How- 
ever, for the vector potential form the quasidiagonal tetrad is 
more suitable. This can be characterized intrinsically by re- 
alizing that there is also a Killing-Yano tensor of valence 3 
for the Riemannian space with line element (2.1) with com- 
ponents Khrd = ~~~~~~~~~ where the only nonzero element of 

TABLE I. Eigenvalues for the corresponding eigenvectors given in Eq. 
(2.3). 

I ,w 
I 0, 
I (21 
I ‘3, 

Eigenvalues of Eigenvalues of 
4, KE 

0 I/be 
0 - I/be 
i 0 

-i 0 

K‘$ K, = a. If we now look for simultaneous eigenvectors 
of Kb, = K, KC - ( VdKd )gbc and Kbd we recover eigenvec- 
tors in the quasidiagonal tetrad. In the case of the form of 
Maxwell’s equations written in terms of the vector potential 
we solve the more general problem of the massive spin 1 
equation, viz., 

A’A, - R ;A, = m2Ab, VdAd = 0. (2.4) 
If instead of the frame e;,, we choose the quasidiagonal 
frame specified by 

E’;,) = e’;,, + e’,,,,Ei,, = el,,, - e;,,,E:., = e;,,i= 2,3 
then Maxwell’s equations have the form 

-i, +‘” A, 
C c 

+ &+~c?~+~ A, =m2Ao, 
c C > I 

A,, +%- a 

VQbX 
a26 * 

ay-b?z +c’ A* 
C c > 

ay+i8z+L A, =m*A,, 
C c > 1 

A 
2c 

KG - ~if3z-t-~+(~~+(&) 
a’b ‘c 

+f [($+]] A, -%(a, +$+4, 

-f-$~y+fdz)A, =m2A2, 

+$$(a, -idz)A, =m2AA3, 

(a, +%)A0 -+(&. +?)A, 

+ &yb a,+++: -4 > 

(2.5) 
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+ a, + hz + 
C 

where 

A,, = g‘@&&. 

“y A,=0 , 
C ) I 

There are two families of solutions for these equations. 
(1) Wewrite 

A” = aog, (y)e - jAr, A, = a,g, (y)e-“‘, 

A, = ( l/vq)a,g, (y)e- iAz, A, = ( l/ti)a3g2 (y)e-“‘, 
(2.6) 

where the functionsg, ,i = 0,1,2 satisfy the first-order system 

<a, - (2 /cl + (+)lgo (Y) = A&, (Y), 

@y - (A /c)lg, (Y) = A,g, (Y), 

(a, + (A /c)lg, (Y) = A,go (VI, 

(a, + (A /cl + cqdlg, (Y) = 4g, (Y), (2.7) 

which is consistent if A, A, = A,&. Then for the x depen- 
dence of solutions of first type choose 

a, =ah,, a2 = iah,, a3 = iah,, a, = 0, (2.8) 
where 

$h,+ ~+a,-% h,=O, 
> 

+h, + 
( 

u+d, -+ 
> 

h, =0, 

( 
u-b’, -; 

> 
h, +$ h, =0, 

u-8, + 
> 

h, +$h* =O. (2.9) 

Then the function a satisfies the differential equation 

[ 
a:+%a,+~+(~~+~]B=m'6. (2.10) 

(2) For the second type of solution choose the compo- 
nents of the vector field as 

a, = itob,g, e-“‘, a, = 2,b,g,e-iAz, 

a, = (l/v”r)ii,b,g,e-“‘, ~2~ = (l/VZ)ii,b,g,e-“‘, 
(2.11) 

and require that the functions b,,i = 0,1,2 satisfy the consis- 
tent system of equations: 

&b, = -&b,, 

(a, + (26,/b))6, = 3E6, + (u/b)b,, 
Eb* + (R&/26) = 0, 
A= --&I, = -g3, A, =/14=;u. 

Then the 2, functions satisfy 

(2.12) 

1419 J. Math. Phys., Vol. 32, No. 5, May 1991 

d2 I 3ar d I 3E2 I 3atl ~- f a ’ a2 a 
6v n 

+- 

a2 
a, = m’ii,, 

2a,c -- 
a2 

iti0 = m’h, . 

In particular, if the metric is chosen in local coordinates to 
correspond to the open RW cosmological model, then 

a=sinh’($/2), t=j(sinh$-$), 

b=sinhx, c=siny. (2.14) 

Identifying 

A, =a,@t$b)~&,(O,y,z), 

A, =~,~~~(x)~&4uLY,z), 

A2 = a, @Y;; (xP:M (Qy,z), 

A3 = a,@?? IJ(x)DJ- IM(O,y,~), m = 0, + 1, (2.15) 
we find that the solutions of Maxwell’s equations 
(mass = 0) are given by 

a, =O,a, = (cosh$/2)-3’2PfI$+2i,,(cosht,J/2) 
(2.16) 

and 

a0 = (cash 7,b/2)-3’2P $:::+2i,,(cosh g/2), 

a, = (1 +p2) "'(&, + 3 cash $/2)a,, 

where PL (z) is a solution of Legendre’s equation. The sec- 
ond solution does not represent electromagnetic waves and 
can be removed by a gauge-fixing transformation. This solu- 
tion represents the solutions of Maxwell’s equations in 
which the vector A = (&,A, ,A,,A, ) is simultaneously in 
the synchronous and de Donder gauges. 

The systems of first-order differential equations (2.7), 
(2.9), (2.12) mimic the recurrence relations for the matrix 
elements @f’;(a), m = 0,l and o;A,(0,t9,+). 

In fact if one examines the spinor equivalent of Max- 
well’s equations, which are a special case of massive equa- 
tions due to Wiinsch,‘3 viz., 

VAA'qbAB = m$BA’, 
V (AA’ yy') = - m4AB? (2.17) 

then relative to the null frame e;,, solutions can be chosen 
such that 

q& =a,h,g,e-“‘, q$,, =a,h,g,e-‘A’, 

qb,, = a, h2g2e-“‘, 

&,,,, =A,h,g,e-I”, $,,, = -A,hogoe-““, 

&,,,=A,h2g2e-“‘, ~+4,~,= -Ah,g,e-‘A’, (2.18) 

where the functions a, ,A, satisfy the coupled equations 
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5 
1/z 

a,++--+ > 
a, EmA,, 

-$- a,+%+? A, =ma,. 
a a > 

(2.19) 

This separation of variables procedure does not work if an 
attempt is made to use the tetrad and to mimic the recur- 
rence formulas relating the various components of h,,. In 
fact this procedure will only work if the underlying infinites- 
ma1 distance dx’ + b ‘(x) (dy’ + c2 (y )dt) corresponds to a 
three-dimensional Riemannian space of constant Rieman- 
nian curvature, i.e., the case which includes the RW metrics. 
Rather than write out the equations in detail, we mention 
that the solution to the equation for gravitational waves in 
the simultaneous synchronous and de Donder gauges has 
the form ( 1.29) withf, = f, = 0, m = + 2 andf, given by 

fi = (cash $/2) - 3’2P ? :,“2’, *,,, (cash $/2), (2.20) 

where Pi (z) is a Legendre function. 
This is a solution of the equations 

Gab + 2&c,, Gcd-2R,(,G ‘=O b) ’ 
V”G,, = 0, G”, = 0. 

Any theory that explains exactly when a separation of vari- 
ables procedure works would need to show exactly why it is 
that spin 1 equations in the case of infinitesmal distance 
(2.1) admit separable solutions whereas higher spin equa- 
tions do not. This problem does not occur in the case of RW 
cosmological models, as group theory guarantees the results. 
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APPENDIX: THE LORENTZ GROUP SO(3,l) AND 
COMPLETE SETS OF MATRIX ELEMENTS 

We give here in summarized form, the relevant proper- 
ties of the Lorentz group. We refer the reader to Gelfand, 
Minlos, and Shapiro.6 

If R, (t) is the rotation about the ith spatial axis and 
Ni (t) the hyperbolic rotation in the Oi plane i = 1,2,3 then 
the generators of these one parameter subgroups denoted by 
M,,N,,i = 1,2,3 satisfy the commutation relations 

[MiMj] = +MK, [Mi,M,] = +NK, 

[A’,&] = -+MK. (Al) 
Each irreducible representation ( IR) of SO ( 3,l) is labeled 
by a pair of numbers [ m,c] where c is complex and Irnl a 
positive integer. There are two invariant operators 

K, = M2 - N2, K, = M-N (A21 
such that in a given IR 

K, = 1 - c2 - m2, K2 = icm. (A3) 
The IRS of SO (3,l) are of two types. 

1. Infinite-dimensional class 

In this class c2 # ( fm} + n)’ for any positive integer n, 
The action of the generators of the Lie algebra on a canonical 
SO( 3) basis&, is 

M*.f;/l=4+,J;~*l~ 

M-J;, =&i-,, 

iM3fz = 4% T 

N,.fL =a:,~+, cJ;-,.~+~ -aLA-, hL+, 

+aiT-‘,4-1cI+I I+~.~+~~ f 

N-J;, =a:,- L+14-l,A-1 --“I-d.d-I&L-l 

-&?-rc,,, ~+l.l-lY f 

iN,f~ = ai, - R 4 - I.2 - AA&,, - a’T”aA cl + ,A + I,L, 
M, =M, &iM,, N, =N, +ilv,, (A4) 

where 

A,=imc, (12- m2)(12 - c2) 
l(Z+ 1) 

Cl = 4 
i/J- 1 412- 1 I ’ 

aiu =J(I-A)(Z-u). 

The l,~% spectrum for the IR [ m,c] is 

IA Id, I = lm[,jm[ + 1, .+. . 
The representations are unitary if 

(1) c=ip, O+J<CO, m=O, &f, *l, &j... 
(this is the principal series); 
(2) Imc=O, O<c<l, m=O 
(this is the complementary series). 

2. Finite-dimensional class 

In this class c2 = ( [rn 1 + n) * for some positive integer n. 
The action of the generators on a canonical SO( 3) basis is as 
in (A4). The Z,;1 spectrum for the IR [ m,c] is 

[A Ed, I= Imf, lrnl+ I,..., Iml +n-- 1. 

The unitary IR [ m,ip] can realized on the space of functions 
on the two-dimensional sphere via the orthonormal angular 
momentum basis functions: 

j& = (~)“‘IL Chm), IA Id, 

I= Imj,[m[ + 1, . . . . (A51 
The action of the Lorentz group can be induced from the 
action 

(A61 
via the identification 
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Izl- ’ = tan 40, arg z = f$, 

and with 

f(t9,qS) = eeim6 (sin2 6J/2)if-‘f$(z), (A7) 

the matrix element of N3 (a) in the angular momentum basis 
has the integral representation 

@f;(a) +2z+ 1)(2J+ 1) 

s 

I 

X dx (cosha+xsinha)‘f-‘, 
-I 

where 

xd:, (x)d;, (x’) (A8) 

x’= (x+tanha)/(l +xtanha). 

An explicit expression for these functions has been obtained 
by Due and Van Hieu.14 These functions satisfy the ortho- 
gonality relations 

q;(a)@$‘$“(a) sinh’a da = N$‘,“6,,.S(p -p’) 

m 

%J W@Yj*(a')dp 

= NPrn &a -a') 
N sinh2 a 

,j= min(j,J). (A91 

The normalization factor is 

NfJm = 27r (L --jV[2(1+ U!12(j+ Iml>!(j- (m(>! 
(L +j)!(L + m + Z)!(L - m)!(L + I - m)! 

(p2 + k2) r(ip+ Irnj) 2 
I(ip+L+l) ’ 

where 

L = max(Z,J). 
These functions obey the symmetry relations 

<Pf2AJ(U) = ( - l)‘-JQ$J”( -a) 

= ( - l)‘-J@;Jp--(a) 

= WI-,$ (a). (A101 

We know from the group theory arguments that each 
component of a Lorentz invariant equation must be expan- 
dable in an appropriate choice of matrix elements. Recur- 
rence formulas for the functions @rA; (a) can be deduced by 
realizing the matrix element D {z;! (g) in the generalized 
Euler parametrization in the form 

Dk%‘k) = CD:,(~,e,O)<P~~(a)DI,,(a,~,,y). 
P 

(All) 
For fixed J,A ’ these matrix elements provide a realization of 
the unitary IR [ m,ip] by the left regular representation: 

T,D [m+“,AJAt (g) = D ‘msi$Ajp (g’)D ‘m+“-@JA, (g). 
(A121 

Consequently invoking the canonical action of the infinitesi- 
mal operators as in (A4) we deduce the recurrence relations 
that follow. These results are due to Str6m:‘5 

J[(Z+ l)2-A21(d, -Zcotha)WC(u) +(1/(2sinha))[J(Z--)(Z-A+ l)(J-A)(J+A+ l)@,PT+,J(u) 

+d(Z+A)(Z+A+ l)(J+A)(J--A + l)@,pT+J(a)] 

= - ((z+ I)‘-m2)((Z+ 1)2+~2)(~)]“2*~~,~,(~), 
[ 

-<a, + (Z+ 1) coth@I?‘,,(a) +(-- 1/(2sinha))[\l(Z+/2)(Z+/Z+ l)(J+A)(J+A+ l)@f,“,,J(u) 

+d(Z-/2)U-A + l)(J+A)(J-A + l)@:?+,,(a)] 

= [ (z2-m2)(Z2+p2) ($$j-)]“2@f!,AJ(a), 

(Ad, + A coth a + imp)@%? (a) = & [d(z+Mz-~ + l)(J+R)(J--R + l)@P,“_,J(a) 

-d(z-n)(l+A+ l)(J+A+ l)(J-/Z)@P,“,,&z)], 

d2 +2cotha&, _ f/(1+ 1) +J(J+ 111 0 0 
sinh2 a 

+ ( 1 + coth2a)R 2 + 1 + p2 - m2 
> 

QTE (a) 

= -~[ic~+~)c~-n)c~+n,c~-n + i)<~,“_,,(~) 

+d(Z+A+ l)(I-A)(J+A+ 1HJ-W$‘+~.,(a)]. 
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These relations then enable the uncoupling of the variable of 
a,, in relativistically invariant equations. The matrix ele- 
ments arising from the Euler parametrization have given one 
complete set of functions with which to expand relativistical- 
ly invariant equations. There are however other systems of 
basis functions possible, corresponding to a different choice 
of group parametrization and coordinates on the hyperbo- 
loid. These functions are the analogs on HJ of vector and 
tensor expansion functions corresponding to spherical, or 
cylindrical waves in Euclidean three-space. We list below a 
brief summary of other important sets of basis functions that 
are possible, together with the corresponding group parame- 
trizations and coordinates on HI. In each case the new basis 
functions are eigenfunctions of a definite subgroup chain of 
SO( 3,l). In the case of spherical coordinates ( 1.9) the basis 
consists of sets of eigenfunctions of the operators M2 (angu- 
lar momentum) and MS (its third component). 

Two other coordinate systems on the hyperboloid are 
the following. 

( 1) Hyperbolic coordinates 

Y = (cash a cash b,cosh a sinh b cos 4, 
cash a sinh b sin 4,sinh a), 
- CO <a< m,O<b< 00,0~5<2~. (Al4) 

The corresponding group parametrization is 

g = 4 (4S)N, tb)N, (a% (aMI (LO& (~1. (A151 
The appropriate basis functions are denoted by 

H~~ta)D~N(O,b$),e = L- , 
where ZP& ( CJQQ) are the matrix elements of a general ele- 
ment of the SO (2,1) group given in terms of the Euler para- 
metrization 

g = R, (PIN, tb)R, (4) 
and in the corresponding unitary irreducible representations 
labeled by j,e = f where 

j= -t+iq,O<q<oo;i=y,~+ l,..., [ml - 1; 

m =j+ l,j+ 2, . . . ;e= +, 
m=j+l,j+2,...;e= f, 

m= -j- l,-j-2,...;e= -, 

qlml = O,$,l,$, . . . ;lml - v 
is an integer. 

The functions H$F(a) have the integral representa- 
tion” 

HY$+ (a) =-$.,/m(j++) 

s 

cc 
X (coshacoshb+sinha)@-I?“-” 

0 

where 

~d',~ (cash b)dk, (cos 0,) sinh b db, 
(A16) 

cos0, = (coshbsinha +cosha)/(coshbcosha +sinha) 

and 

HfAy- (a) = ( - l)‘-“Hf$-m+ t --a). (A17) 
As expected, the recurrence formulas for these functions en- 
able the complete decoupling of relativistically invariant 
equations from the dependence on a,b& in a frame corre- 
sponding to the one-forms: 

e (, ), dx’ = da,e,,,i dx’ 

= (l/V?) sinh a(db + i sinh b dt$), 
e (3)i dx’= (l/G) sinha(db-isinhbd$). (A181 

Bearing in mind that if we consider spinor equations, the use 
of null tetrads is appropriate, the basis functions are eigen- 
functions of N: + N i - M: and .MJ with eigenvalues 
- j( j + 1) and M, respectively. 

(2) Horospherical coordinates 

v = (+r ‘e’ + cash a,re” cos &vu sin &ir ‘ea - sinh a) 
- co <a< oo,OGr< oo,O<f#<2n. (A19) 

The corresponding group parametrization is 

g = R, (#IT, @IN, (a)& (a)R, tP)Rs (~1, (4420) 

where T, (Y) = eCN’ + Mz)‘. 
The appropriate basis functions are denoted by 

Ef,“, (a)J, -M Wr)eiMm, 
where J,,(z) is a Bessel function. The functions EPA: (a) 
have the integral representationi 

Eg(a) =J~[(@c0s2+O)+ 

xJ,-, e-LlwtanZ 
( 

‘e 
> 

xd',,(cos8) sin 8dB. (A21) 
The corresponding frame of one-forms in which complete 
decoupling of relativistically invariant equations occurs 
from the variables a,r,& is 

e (Iii dx'=da, e(2), dx’= (l/r5)e-“(dr+irdc$), 
e(3fr dx’= (l/v’2)e-“(dr- ird#), (A221 

with suitable modification to include the use of null tetrads if 
spinor equations are included. The basis functions are eigen- 
functions of (N, + M2 )2 + ( N2 - M, )2 and M, with 
eigenvalues - X2 and M, respectively. In fact, all possible 
subgroup chains for the Lorentz group are known and ap- 
propriate basis functions on H3 for symmetric tensors can be 
computed in a suitable frame, For further details see Kal- 
nins.‘? 

Specifically for the case of perturbations of the RW cos- 
mological models, we give the explicit expressions for the 
expansion functions in the coordinates. The functions 
@fg (a) satisfy the differential equation 

[a; -t-2(1+ 1) cothad, 

+ ([Z(Zi- 1) - J(J+ l)]/sinh’a) 

-2impcotha+ (I+ 1)2+pz-m2]~~(a) =0 
(A231 

and have the solution 
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@f/J(a) =iJ-‘(1-e-20)J-‘exp[ - (I+ l-m-+)a] 

x,F, (J+ 1 -i&J+ 1 - m;W+ 2,l -em*‘). 

(A241 
The other external matrix element can be obtained from 

the symmetry condition 

@f”.(a) = @g”(a). (A25) 
The remaining functions can be obtained from the recur- 
rence formulas as follows: 

m=O 

W-,,(a) =%%(a) 

= [2/JJ(J+ 1) - 21 (sinhad, 

+ cash a>%$, (a>, 

Q&(a) = [2/d-] (sinh &‘, + cash a) 

x%%m + ~J(J+ I) - 2~g(~); 
t-426) 

m = 1 

@‘4: 1 (a) = [W,/J~) - 21 

X [sinhad, +coshafip]Q$L,,(a), 

@g&(u) = L2/dmI 

x [ (sinh 06’~ + cash a) + ip] Q$‘, ,J (a) 

+ ~J(J+ I) - 2q;2,(u); (A271 

m=2 

w&J(d = cwJ7vTT)-21 
X[sinhuJ, +coshu+ip]@$i,,(u), 

@%(a) = r%mT-ul 
X [fl (sinh UC?, + cash a)@$: ,,(a) 

-dS[J(J+ 1) -2l~*~,,W. (A28) 

These expressions are deduced from the simplest recurrence 
relations that enable all other matrix elements @$‘jj (a) to be 
deduced from the expressions for the extremal components. 
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