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The Dirac equation is solved for an electron in a Kerr-Newman geometry using an 
adaptation of the procedure of Chandrasekhar. The corresponding eigenfunctions obtained 
can be represented as series of Jacobi polynomials. The spectrum of eigenvalues can 
be calculated using continued fraction techniques. Representations for the eigenvalues and 
eigenfunctions are obtained for various ranges of the parameters appearing in the 
Kerr-Newman metric. Some comments concerning the bag model of nucleons are made. 

I. INTRODUCTION AND DIRAC EQUATION 
SEPARATION 

The Kerr-Newman’ space-time represents the exter- 
nal gravitational field of a charged rotating black hole. 
The Kerr space-time’ has the remarkable property that 
many of the equations of mathematical physics are solv- 
able by means of a separation-of-variables-type ansatz3 
This property allows one to study linear gravitational per- 
turbations, for example, in the neighborhood of a Kerr 
space-time solution. Solutions of Maxwell’s equations and 
the Dirac equation can also be obtained by this method. 
The separable functions that arise have been studied by a 
number of authors.&* In this article, after rederiving the 
separability of the Dirac equation in the Kerr-Newman 
space-time background,’ we develop new methods for 
solving the resulting equations. In particular we compute 
the spectrum of the separation parameter for small values 
of the parameter a, as well as for large values. Using 
symmetry properties of the equations in the angular vari- 
able 0 we reduce the problem to one involving a three- 
term recurrence relation. This enables the spectrum to be 
computed in terms of continued fractions. In addition to 
developing properties of the e-dependent separation func- 
tions we derive a three-term matrix recurrence relation 
for the separated r-dependent equations. Representations 
of these solutions for large a and r are then developed. 
For the particular case of flat space, expansion theorems 
are given for the r-dependent functions. Finally we com- 
ment on the applicability of these functions to bag models 
of nucleons. 

We use consistently the spinor notation of Penrose 
and Rindler” and, in particular, the null tetrad formal- 
ism. The Kerr-Newman solution of Einstein’s equations 
has the line element 

- 2a2Mr sin2 8 
V+a2)+ p2 sin2 8 d42 

4aMr sin2 8 
+ 

P2 
dt 4 (1.1) 

whereh =? + a2 + e2 - 2Mr,p2 = ? + a2 cos2 &and 
p=r + ia cos 8. The electromagnetic field (vector poten- 
tial) due to the charge of this solution is 
(AAdd,) = ( - er/p2,0,0,eru sin2 f?/p2). Specifi- 
cally, we adopt the Kinnersley null tetrad3 of vectors with 
components 

I’= ( l/ @A) (r’ + a2,A,0,rr), 

ni= (l/ $p2) (3 + u2, - A,O,a), 

mi=(l/&)(iasin8,0,1,icosece), 

&=(l/JZp’*)( -iusin&O,l,-icosec8). 

In tetrad components the vector potential is 

Aoo, = - er/ &A, 

All,= - er/ $p2, 

Ao,,=A,o,=O. 

(1.2) 

(1.3) 

The Dirac equation for spin f particles in an electromag- 
netic field is, in spinor form, 
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(VBB, - ieA E~r)g)~= (imJ Jz)x~b 
(1.4) 

( vBB’ - ieABE’)xBt = - (im,/ Jz)q~& 

In terms of the modified field components ~0 
= ~oei(m~ + at), pp, = +lei(w + 4, xo, = X#w+ 4, 
pXI, = Xle i(mq + Of), these equations assume the form 

- &2d0 + (DO - ied fiO$, 

where 

= - im,( r - ia cos e)x,, 

(42 + ied JzM0 + &$I 

a K 
Do=;i;+i~, 

a iK (r-M) Dt =---+ 
‘I2 ar A A ’ 

=- im,( r - ia cos 8)X1, (1.5) 

- L&Jo + (Do - ier/ &AM, 

=im,(r + ia cos ehjo, 

(AD!,, + ier/JZ)Xo+L1,2X1=im,(r+ ia cos e)4,. 

These equations can be solved by the usual ansatz 

#o=R1/2S1/2, h=R - 1/2S1/21 
(1.6) 

with 

Q=aasin8+mcsc8, K=(?+a2)a+am. 

The first two of these equations are the same coupled 
equations that are obtained in the case of Kerr space-time 
(and even flat space M=O). The last two equations are 
generalizations of the r-dependent equations obtained for 
the electron. The main problem is to determine the eigen- 
values ;1. Looking for series solutions of the form 

Xo= - R,,2S- 1/2, XI=R - 1/2S- ~21 

to give the coupled equations 

L1,2S1,2= (A - am, ~0s fw- 1/2r 

&s - 1/2= - (A + am, ~0s ew,,2, 

(Do - ier/ @ )R - I/Z= (A + imJ)R1,2, 

(ADf,, + ier/ @ )R,,,= (A - imJ)R _ 112, 

(1.7) 

s,,2= i arm, - l/29 
r=N 

s- 1/2= il 
r=N 

where &, (Ref. 
tation group and 
rence formulas 

11) are the matrix elements of the ro- 
N = min{ 1 m  1 ,f}, we obtain the recur- 

I 
, 

amm, 1 1 d (3-m2)(12-$) &(r+ II2 - m2W -8 1 
--A+ t2r- l)r b,+=m, (2r - 1)r &-I+ ’ (2r+3)(r+ 1) br+l] 

(1.8) 

(1.9) 
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These two relations can be written in the form 

aSr-~+BrCr+yCr+l=O, 

where 

(1.12) 

c,= ; . [ 1 r 
In order to compute the spectrum of A we could suitably 
redefine the vector C, = n,.D, such that the three-term 
vector recurrence relation has the form - S,D,- , 
+ D, + E$,+ i = 0, Do + E& = 0. The corresponding 

spectrum for A can then be calculated from the determi- 
nant of the matrix infinite continued fraction: 

det(l+ ee(I+ ei(I+ ~(1-t ~~~Sz)-‘6,)-‘)So)=0. 
(1.13) 

To obtain a three-term recurrence relationI we observe 
that the equations admit the discrete symmetry obtained 
by the transformation 

pEe+r - 8, 

PS~,~(~) =sl,2(~ - 8 =c 1,2(e), 

PS- ,,2(e) =s- 1,2(~ - e) =d,,,(e). 

(1.14) 

Therefore we can impose the symmetry requirements that 

sy2t7.r - 0) =cs- l/2(@, (1.15) 

s- 1/2(r - 0) =+2w), 

where e= Al. 
Using the relation z& _ 1,2( - cos e) 

= ( - l)i-milCi,,+1,2 (cos 0) and requiring that our 
solutions be eigenfunctions of P with eigenvalue E, we see 
that a, = kb,( - 1) r+ ’ - m. Consequently the three-term 
matrix recurrence relations satisfied by the vector [;“I be- 
come a single three-term recurrence relation:t2 

I 

dw - m ,) 
h(r,m ) 

r(2r - 1) b-1 

- a(v+ 4) 
h(r+ l,m ) 

(r+ 1)(2r+3) br+l 

amm, 
W-+ 1) 

1 r+f 
r+Z+aam- 

r(r+ 1) )I b,=O, (1.16) 

where h(j,m) = ,/(? - m2)(? - l/4) and E, 
= ( - l)‘c. 

The expressions for the coefficients b, can be calcu- 
lated iteratively using the recurrence formula, expressing 
the eigenvalue il in the form A = Z~?,Apr and using the 
expansion bj*l/bj = E;km,r #*rak,j=0,1,2,3 ,.... The first 
few terms in these series are 

e(2j+ 1) 
hJ=- 2 , 

aI= - 
mka(2.j + 1) - m,) 

2j(j+ 1) ’ 

2E 
&= - 

(EC- m,)2h2(j,m) 
(2j+ lj2 f(2j- 1) 

+ (EC + m ,)‘h(j + Ml2 
(j+ 1j2(2j+ 3) 1 ’ 

4(w- m,)2h2(j,m) 
“= -f(2j- 1)(2j+ 1)3 

2fxmj - 
(j- l>(j+ 1) 1 
4(ea + m,)2h2(j + 1,m) 

- (j+ l)2(2j+3)(2j+ 1)’ 

X- 
[ 

m (m, + a~> 2wm(j+ 1) 

Ai+ l)(j+2) + i(j+2) 1 ’ 

for the expansion of the eigenvalue A, and 

& - 
2e(m,- cx)h(j+ 1,m) 

(2j+ 1>2(j+ 1) ’ 

/“= 
h(j,m ) (EC - me> 

2ej(2j+ 1) ’ 

(1.17) 
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& 
h(j+ l,m)h(j+ 2,m)($ - m:) 
(j+ l)(j+ 2)(2j+ 3)(2j+ 1)2’ 

(Lo - Al) - y= - ’ (1.18) 9, j=O,1,2 ,... . 
j+A+$ ’ 

(1.23) 

&-L W- l,m>h(j,m)(g--:I 
j(j- 1)(2j- l)W+ II2 ’ 

j;= 
4(eo+ m,)h(j+ l,m) 2eum(j+ 1) 

Vi- l)W+ II3 [ j(j + 2) 

m(m, + Qe) 
-j(j+ l)(j+2) ' 1 

‘Q’ 
4(w - m,)h(j,m) 

U+ l)W+ II3 

2eumj 
- (j- l)(j+ 1) ’ 1 

where e = ( - l)i-m+l. 

To justify the preceding perturbation computation we 
note that the eigenvalue equation can be written in the 
form LS=AS, L = Lo + aV, where 

0 
a m 00te. 

------ 
ae sine 2 

Lo= 
a m cot e 

, 
-- 

.%-sine+ 2 
0 

(1.19) 

It follows that (Lo - A1) - ’ is a compact self-adjoint op- 
erator for real A not in the spectrum of Lo. The perturb- 
ing operator V is bounded and self-adjoint with operator 
norm 11 VII =u. From the identity 

(L-/II)-‘=(L()--aI)-’ 

--(Lo-AI)-‘Y(L-AI)-’ (1.24) 

and the facts that (i) the product of a compact operator 
and a bounded operator is compact, and (ii) the sum of 
two compact operators is compact, it follows that the 
resolvent operator (L - U) - t is self-adjoint and com- 
pact for real A not in the spectrum. Thus L can be defined 
uniquely as a self-adjoint operator with discrete 
spectrum.‘3 It is easy to check that the spectrum is of 
multiplicity 1. It follows from Chap. VII of Ref. 13 that 
L = Lo + aV is a so-called “self-adjoint holomorphic 
family of type (A)” defined for all real a. The radius of 
convergence for each power series expansion of the per- 
turbed eigenvalues and eigenfunctions about a=0 is at 
least l/( 20) in the complex a plane. Moreover, the eigen- 
functions found from the perturbation process from a 
Hilbert space basis for all real a. 

For large a the asymptotic form of the eigenvalues 
and eigenfunctions can be computed. In order to do this 
we look for solutions of the form 

- ‘= 1 m, cos e - u sin e 
- u sin e 1 +m,cose ’ 

S 1” 

(1.20) 
+1/2=e 4(COSe)q*l,2(e) 

( 
1 +f$ I ‘:za\e’ I . . . , 

1 

I=ap+&+:+$+ ***. (1.25) 

Equating powers of a we find the leading order condition 

c$‘~ + p2 - 4 +- (2 - mt)cos2 e = 0. (1.26) 

In order to obtain a single-valued expression for 4 we 
choose p = m, for which 0 = f &Tg 
xcos 8 = /3 cos 8, and the condition 

The boundary conditions are ( 1.15). The inner product is 

( T,S) = JOT ( 52S112 + T! ,,2S - &sin e de. (1.21) 

We restrict the argument that follows to the case when 
E = ( - l)j-y the case when e = ( - l)jhrn+l can 
be treated similarly. It is easy to verify that L is formally 
self-adjoint with respect to the inner product. Moreover, 
the operator Lo on this space is self-adjoint with discrete 
spectrum 

s= s 1 1 s-1’2 , 2-mm,2>0. 
+ l/2 

L&=/l&, /.Lj= -j- 5; j=O,1,2 ,... . (1.22) 

Thus the eigenvalue decomposition for the resolvent op- 
erator (Lo - A1) - ’ takes the form 

m,( 1 + cos e)q1,2 = (P - abin e +b- 1,2. 

Further conditions can be solved to give 

~+-~,~=m,(sin(e/2))-“-~(cos(e/2))”, 

(1.27) 

(1.28) 
~j~,~=(p- o)(sin(8/2))-“(cos(8/2))“-i, 

and 
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WOme - (2m + l)a=Bn, (1.29) 

where the integer n = j - f[lm - $1 + Im + f/l. 
The functions f 1” are given by 

f,- =A 
sin ( e/2 ) 

cos3(e,2) +Btan~+Csec2~+Dcsc2~ 

(1.30) 

(n + m  + $1 
f2+ = -f r 

a0 
(p - a)sin2 8 - 2m, c0s2( O/2) ’ 

where 

A=- 
mgz(2m - 1) 2mat(m + 1) 

(23 
, B=- 

3P ’ 

cc - 
ao(o+P)(n+f) &(a--fl)(m--f) A2 

Wm,  - Wm,  
+$ 

n(n + 2) 
D= 16/3 ’ 

E= - mdn(n + 1) 
, F= - 

m3(n + 1) 
4P f3P ’ 

G= (n-3) 

i 

n how-d 1 Cm + f)(n-3) 

-4+ 2m 28 
, H=- 

e 8B ’ 

The next term in the asymptotic series for the eigenvalue 
A is given by 

Alme= --$ 
I( 

7 
e 5+2n+2m u 

1 

+ 3-2, p -(n2+n/2-1-3mn) ( )I 2 16 

(1.31) 

The higher-order terms in the asymptotic series become 
increasingly complex. The next term is given by 

+ 
~O(U + P> (2m + 3) (n-3) n 

-&(6m+7-2n)(2m+1-2n) +T 1 [ A0 
me 4+2m (B-a) 

e 1 
X a0(a+P)(2m+n+ 1) +4m3 aon@--a> 1 

P m , 8+ Dm, -B;i:(lOm+2n+ 1)(2m-22n-t 1) 1 
lo@  - a) ~o(o+B>(n+f> ~0(a-DP)(m-f) ;1; (m+f>(n+l) 

+ - 16 (n+ 1)(2m+ 1) me + -- me 4+ 32 1 
Ao(~ + B) (2m + 2n + 1) + &me non(P - a) 1 

X 
me P + Wm, 

+m(2n+6m-11) 

X(2n-2m- 1) - 1 &(o+P)(2m+2n+ 1) Alme 10n (B - 0) 
Wm, + B + Wm, 

-&(2m--2n+l)(n+2m-1) . 1 (1.32) 
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To obtain the connection with the functions that are 
eigenfunctions of P we need only take suitable combina- 
tions of the two independent functions whose asymptotic 
properties we have computed here. The second solution 
can be obtained by taking the transformation 8+rr - 8. 

II. THE FUNCTIONS R*,,* AND THEIR PROPERTIES 

The coupled equations for the functions R * 1,2 can be 
solved by methods similar to those adopted for the t9- 
dependent functions SaI12. Choosing new functions V, 
defined according to 

V =A’12R + + ~29 V- =R - 1/2 

and a new variable A defined by 

r-M= ,/vsinhA 

we can write these equations as 

(2.1) 

(2.2) 

$+RcoshA+ tanhA+& V- 1 
=(a + im,(M + dw sinh A))V+, (2.3) 

a 
--RcoshA- 
aA 

tanhA---& V+ 1 
=(,I-im,(M+ ,,/vsinhA))V-, 

where R = ia ,/v, S= 2iaM - ie/fi, and 

I 

T= 
i[a(2M2 - e2) + am] - ieM/ Jz 

a2+e2-M’ (2.4) 

Solutions of these equations can be sought in the form 

V, = c W$;+ l/29 
r 

v- = i? 45’;:,,29 
r 

(2.5) 

where p=iT and q= -S. 
The functions U$ are analytic continuations of the 

matrix elements of the rotation group, viz., L& 
= u,“,,( i sinh A). These functions satisfy the recurrence 
relations induced from the rotation group matrix ele- 
ments. This can be seen by invoking the relations given by 
Gelfand et al.” for the rotation group in their complex- 
ified form. Typically such relations are 

a (ip+ (rl+f)sinhA) 

a- cash A l 5;: l/2 

=- J (v+r+f)2-r12qqYl,21 

I $+ 

(ip + (q--$)sinh A) 

cash A 1 qqJl,2 

= - J7iG4m+;:t)2,p 

Consequently, we obtain the recurrence relations 

(2.6) 

m ,Jrpbl-0 1 [(v + r12 - p21 [ (Y + r12 - (77 - 9”l 
-A-im&+ 

(v+r)(v+r+ 1) 
A,- rn,dv 

(2(v + r) - l)(~ + r) A,- 1 

[(v+r+ 112-p21[(v+r+ 112- (q-if)2l 
+ 

(v+r+ lW(v+r) +3) 
A r+l 1 

‘[(v+r+v+ 1)2-4][(v+r)2-p2] 

(v+r+ 1>(2(v+r) +3) 
B 1 r+l * 

[: 

[(~+r-rl)~-51[(~+r)~-p~l 
(v + r)(2(v + r) - 1) K-1 

(2.7) 
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m, a2+$-M2p(q+f) [ (y + d2 - P21 [ (y + d2 - (77 + iI21 
n-imp+ 

(Y+r)(Y+r+ 1) 1 B,+m,dv 
(Y + rw(Y + r) - 1) 

h-1 

d [(y+r+ 1)2-p2][(Y+r+ 1>2- (?I+#] 
+ (v+r+ 1)(2(y+r) +3) 

B r+l 1 
.I 

=- [J-+X(= 

[(v+r--rJ+ 1)2-tl[(Y+r)2-p2] 

1 
d [(Y+r+17)2-$1 [(v+d2-p21 

A,- (v + W(Y + r) - 1) 
1 

A,-,- 
(~+M2(~+4 + 1) 

A r+l . 
I 

(2.8) 

These relations are of the same type as derived for the 
functions S, iI with recurrence relations of the form 

5;z,- 1+ rlz + @Jr+ 1 =a 

where 

(2.9) 

A, z,= B 
I I 

. * 

For large a representations of the solutions can be 
achieved as follows. The expansion of the eigenvalue ,l 
takes the form 

4 122 23 
A=am,+A0+;+;;z+;;5+ m-e. 

For large a we seek solutions 

(2.10) 

1 
f;(r) fif(‘) f,“(r) v*=l/*eB’ l+- cI +-g-+&3+- * I 

(2.11) 

For solutions of this type the constants $* must satisfy 

W+d$-=mA+, (2.12) 

where p = ,/G. 
Without loss of generality we can assume f,’ (r) 

= H~=,cz~~# with u,$ = 0, n =0,1,2 ,... . The first few terms 
in this expansion are 

_ 2&a-- (2m + l)m, 
a1,0= 2mJ3 ’ 

iLom, 
a,>=i(m + 1) - - 

i(2m + l)mt 

P + xa+m3 ’ 
(2.13) 

4ilomp(a--fl) - (2m + l)m:(a +P) - 2&m: - 
8CW~ + S) - m3 

For the functions V, an asymptotic expansion with re- 
spect to r can be obtained. We search for solutions of the 
form 

(2.14) 

for suitable functions p,(r), and constants I$*, p. An ex- 
pansion of this type is possible if 

(P+ ah- =wP+, 

p = - uie/ JZP + iM( 2/3 + m3//3). (2.15) 

The first nonzero terms of this expansion are given by the 
coefficients 

q- = - M - U/m,, 

02 += -e/JZP+m@/P(P+a). 
(2.16) 

In the case of flat space, i.e., e=M=O, it is possible to 
expand one set of complete eigenfunctions of the Dirac 
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equation in terms of another. For the Dirac equation this 
is achieved using the Majorana representation of the 
Dirac gamma matrices, viz., 

Y=[: ,“] 9 r’=[ ,’ ;I9 P=[; :];217) 

From our knowledge of the separation of variables in 
oblate coordinates (i.e., inserting the conditions e=M 
=O) the separable solutions are characterized as eigen- 
functions of the operator 

Q=+.L+y’++YL$f+y51P$) 2 (2.18) 

where Li = etid a/&?, i= 1,2,3. 
We now look for solutions of the eigenvalue equation 

QY=AY that are also solutions of the Dirac equation: 

(2.19) 

Here zcl, g= 0,1,2,3, are Cartesian coordinates in 
Minkowski space-time. If a standard choice of spherical 
coordinates is made, i.e., zc = t, z1 = o sin a cos ‘y, 2 
= o sin a sin ‘y, zs = o cos a, and a formal Fourier trans- 
form 

&I= I exp(ik0z0 + &.z>@p dz 

taken with k” = u, 

k= (k’,k2,k3) 

=Jm 

and dx = sin a dc 

‘(sin 0 cos p, sin 8 sin q, cos 19), 

x dy these two conditions are equivalent 
to the four equations 
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im a cot e 
a+-- -_ 
ae sin 8 ap + 2 au sin 8 p, 1 

= (A - am, cos e)jh+, 

I 

a im a cot 8 
-- 

Z-sine&p+ 2 - + ua sin 8 f$52 1 
= - (A - am, cos e),q,, 

where fi = R1( - 8)R3( - q~)$ and RI, R3 are 
rotations about the indicated coordinate axes in three- 
space. 

The solutions of the eigenvalue equations in the 
transformed space of Dirac spinors /P are of the form 

fiJ2=im&2(ek icut+ mp) 9 (2.21) 

p&=(/3- i0)S,,2(8)ei(~f+m~). 

1 %-sin$&p+ a -- im a - cot 2 6 + au sin 8 1 $ 

If the solutions are also eigenfunctions of the discrete 
transformation P then the functions Sarj2 appearing in 
these expressions are just those we have already studied. 
The basic idea is the following. From the expressions for 
&J recover the expressions for #. Using the expansion of 
the function e’k’r in terms of spherical Bessel functions, as 
for instance found in Ref. 14, the form of 11, is recovered. 
The Dirac spinors that result are eigenfunctions of Q and 
P, are solutions of Dirac’s equation, and are represented 
relative to the Cartesian coordinate and spin frames given 
in the definition above. Then, transforming the spinor 
basis used in oblate spheroidal coordinates, we obtain 
expressions for solutions of the Dirac equation, in terms 
of series of spherical Bessel functions, that are eigenfunc- 
tions of Q and P. The expressions for the components are 
given by 

= - (A - am, cos f3)*,, 

I/~= i i [(P-ia)b$(+,-$;;r,mIL,K) 
L=O r=O 

1 
im a 

A+-- 
c0te 

de sine&p+ 2 
--ua sin 8 &J3 1 

= (A-am, cos O>fic,, (2.20) 

xC(&f;r,f jL,O) - mpF(t , - d ;r,m ILK) 

xc&-t;r,-4 ILO)] 

XiLj,(P r>u”,- 1,2 dcos ale i(m - 1/2)y 
, 
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qb2= g 5 [i(P-iff)bF(b,f;r,m/L,K) 
L=O r=O 

xc&-f;r,flL,O) 

LO3 = 
1 

P I 
cos a 1 

2 + a2 
- 2 2 1 , 

P 

+ imp& , f ;r,m I L,K) C(f , f ;r, - 4 I L,O) ] 

Llo= 
ji [:pqy 

ia sin a = + T 

Xi’jL(fi r)u,+ 1,2 o(cos a)eiCm+ “2)y, (2.22) 

where C( j,m;l,n I L,M) are the Clebsch-Gordan coeffi- 
cients of the rotation group. The expressions for $s and 
$4 can be obtained by interchanging the expressions (fi 
- iu) and im, in the expressions for $, and q2 to obtain 

$3 and $4, respectively. The change in spin frame from 
Cartesian coordinates to the frame specified by the null 
tetrad given above can be readily computed. We stan- 
dardize the choice of oblate coordinates as zc = t, z’ 
= I,/= sin a cos y, 2 = d?- sin a sin y, and .$’ 
= r cos a. The Lorentz transformation that maps the vec- 
tor fields P = a/ati into the vector fields 

- Jmsiny[b+=+]], 

L’2= 
Jl 

l2 iJ7TZcos a sin Y[i-fl 

+ pT&osy b-$ 1 11 , 

oo= l (P+n”)-$, T 

D’= ;i(P-nc$, (2.23) 

P=;i(mp + EJ) &, 

L13= ;I r sin a = - =- 1: P? 
LZo= G ia sin a = - = [i P? 
L2,= l2 \Ifcosacosy[~+Ap] 

J[ 

D3= ’ (mp-fip)-&, 
3 

according to LY = Lc”,,LY can readily be calculated. The 
matrix elements L”,, are given by 

1 
LO,= 1+ 

7-i 

(12 + a21 
2 P2 ’ 1 

LO* = 1 . 
7-l 2 

rsmacosy &- 
I 

w p2 ] 

. . 

1 

m  +asmasmy -@-$- p2 ] 1, 

LO,= 1 . . 

J-1 

J;7+;;2 
2 

rsinasiny &f- p2 
I 

] 

+ a sin a cos y 
1 &+ 

J3-+;;z 
P2 II9 

(2.24) 

+ JYZ%sin y b+i 1 11 , 

L2,= l2 JTj2cosasiny[$+$] 
7-l 

-ipT2cosy[;-+] 1, 

LZ3= ;i rsina Z-T ii P? 

LXo= 
1 

7-l 

1 _ (?+a21 
2 P2 ’ 1 

L3* = 
1 

7-l 

J;7-t;;z 
2 

rsinacosy A- p2 
I 

] 

+ a sin a sin y 
1 -FG=2+ 

w 
P2 II 

J. Math. Phys., Vol. 33, No. 1, January 1992 

Downloaded 29 Oct 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



L32= 
1 

J[ 2 
r sin a sin y 

1 A+ 
J;T+;;z 

P2 1 

w +asinacosy AZ- p2 ] ] 
I 

L33= 
1 

-T I 

(?+a21 
2 

cos a 1 + 
P2 . 1 

The solutions of Dirac’s equation, relative to the frame 
( 1.2), denoted by 

0+= 
4‘4 1 1 XB’ 

are obtained by applying A(r,a,y), the representative of 
L(r,a,y) acting on the Dirac spinors Y. However, these 
are just the solutions of Dirac’s equation found in terms 
of Teukolsky functions above. What has been achieved 
here is expressions for these solutions in terms of sums of 
spherical Bessel functions and spherical harmonics. 
Clearly these expressions will, in general, be quite com- 
plex. We content ourselves with the derivation of an ex- 
pansion formula for the functions R * r12. Indeed if we 
take a = 8 = VT/~, w = dm, then L can be factored 
in the form R,(p)N,(A)R,(S) where 

.2 l/2 
eQ+$+; l+q , 1 1 

I (r+ia)(r+iu/2) 1’2 
ei6=i (r-ia)(r-ia/2) ’ 1 

The corresponding transformation matrix acting on the 
Dirac spinor then has the form A(r,?r/2,y) 

eY’s~/2elpY’A/2eY’~~/2 md 
Ih(r,?r/2,y)+ 

, consequently, o$ 

The small u expansion of P, = V, f V- can be ex- 
pressed in terms of Bessel functions. The first few terms in 
the expressions are 

P, = (0 + m3) “2Jj(fl r)F2 - 
am 

Xj+ 1) 

X(~-m,)“~Jj+l(flr)r-~‘~+ 
@(a + me) “’ 

16j2 

x [ j(j+ 1) + 2m2]Jj- 1(Br)r-1’2 + e**, (2.25) 
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P-=(m,-G)“2Jj+1(flr)r1’2 

+ iam (0 + me) 1’2 
Jj(P r)r- l/2 

3 

a2/3( me - 0) 1’2 
+ 16(j+ 112 [(j+2)U+ 1) 

An interesting application of these solutions would be 
the solution of the MIT bag model of confinement for 
which the boundary is the surface of an oblate spheroid. 
For this problem the appropriate boundary condition is 

iy5tp*= $ for r= ro, (2.26) 

where np’n,, = - 1 and r = r. is the surface of the 
spheroidal bag. In the tetrad formalism the nonzero com- 
ponents of the unit normal spacelike vector n, are noof 
= @7%, ?llll = - ,,/w. If we naively apply the 
boundary conditions to a single solution of the Dirac 
equation as found in Sec. I this would require that 
R 1,2 = ,/m-A - “‘R _ ,I2 for r = ro, which is clearly 
impossible. If, however, the boundary conditions are 
modified so as to be of the form 

i+t,$= (cos a + ip sin a)*, (2.27) 

where eia = ,/-, then this boundary value problem 
can be more readily solved, as it reduces to the require- 
ment that Rl12 = iA- ‘/‘R _ 1,2 for r = ro. The boundary 
conditions (2.27) do not adequately describe a quantum 
bag although they do imply that the probability density 
vanishes on the bag surface. In order to solve the bag 
model conditions a solution must be represented as a sum 
of eigenfunctions of the type developed above. There are 
then no problems in principle with the bag boundary con- 
ditions. We shall return to this problem subsequently. 
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