332 research outputs found

    Phenomenology of soft hadron interactions and the relevant EAS data

    Get PDF
    The interpretation of the experimental data in superhigh energy cosmic rays requires the calculations using various models of elementary hadron interaction. One should prefer the models justified by accelerator data and giving definite predictions for superhigh energies. The model of quark-gluon pomeron strings (the QGPS models) satisfies this requirement

    Hunting long-lived gluinos at the Pierre Auger Observatory

    Get PDF
    Eventual signals of split sypersymmetry in cosmic ray physics are analyzed in detail. The study focusses particularly on quasi-stable colorless R-hadrons originating through confinement of long-lived gluinos (with quarks, anti-quarks, and gluons) produced in pp collisions at astrophysical sources. Because of parton density requirements, the gluino has a momentum which is considerable smaller than the energy of the primary proton, and so production of heavy (mass ~ 500 GeV) R-hadrons requires powerful cosmic ray engines able to accelerate particles up to extreme energies, somewhat above 10^{13.6} GeV. Using a realistic Monte Carlo simulation with the AIRES engine, we study the main characteristics of the air showers triggered when one of these exotic hadrons impinges on a stationary nucleon of the Earth atmosphere. We show that R-hadron air showers present clear differences with respect to those initiated by standard particles. We use this shower characteristics to construct observables which may be used to distinguish long-lived gluinos at the Pierre Auger Observatory.Comment: 13 pages revtex, 9 eps figures. A ps version with high resolution figures is available at http://www.hep.physics.neu.edu/staff/doqui/rhadron_highres.p

    Flux of atmospheric muons: Comparison between AIRES simulations and CAPRICE98 data

    Full text link
    We report on a comparison between the flux of muons in the atmosphere measured by the CAPRICE98 experiment and simulations performed with the air shower simulation program AIRES. To reduce systematic uncertainties we have used as input the primary fluxes of protons and helium nuclei also measured by the CAPRICE98 experiment. Heavy nuclei are also taken into account in the primary flux, and their contribution to the muon flux is discussed. The results of the simulations show a very good agreement with the experimental data, at all altitudes and for all muon momenta. With the exception of a few isolated points, the relative differences between measured data and simulations are smaller than 20 %; and in all cases compatible with zero within two standard deviations. The influence of the input cosmic ray flux on the results of the simulations is also discussed. This report includes also an extensive analysis of the characteristics of the simulated fluxes.Comment: Accepted for publication in Physical Review

    Lateral distribution of high energy muons in EAS of sizes Ne approximately equals 10(5) and Ne approximately equals 10(6)

    Get PDF
    Muon energy spectra and muon lateral distribution in EAS were investigated with the underground magnetic spectrometer working as a part of the extensive air showers (EAS) array. For every registered muon the data on EAS are analyzed and the following EAS parameters are obtained, size N sub e, distance r from the shower axis to muon, age parameter s. The number of muons with energy over some threshold E associated to EAS of fixed parameters are measured, I sub reg. To obtain traditional characteristics, muon flux densities as a function of the distance r and muon energy E, muon lateral distribution and energy spectra are discussed for hadron-nucleus interaction model and composition of primary cosmic rays

    On the determination of the depth of EAS development maximum using the lateral distribution of Cerenkov light at distances 150 m from EAS axis

    Get PDF
    The Samarkand extensive air showers (EAS) array was used to measure the mean and individual lateral distribution functions (LDF) of EAS Cerenkov light. The analysis of the individual parameters b showed that the mean depth of EAS maximum and the variance of the depth distribution of maxima of EAS with energies of approx. 2x10 to the 15th power eV can properly be described in terms of Kaidalov-Martirosyan quark-gluon string model (QGSM)

    Depth of maximum of extensive air showers and cosmic ray composition above 10**17 eV in the geometrical multichain model of nuclei interactions

    Get PDF
    The depth of maximum for extensive air showers measured by Fly's Eye and Yakutsk experiments is analysed. The analysis depends on the hadronic interaction model that determine cascade development. The novel feature found in the cascading process for nucleus-nucleus collisions at high energies leads to a fast increase of the inelasticity in heavy nuclei interactions without changing the hadron-hadron interaction properties. This effects the development of the extensive air showers initiated by heavy primaries. The detailed calculations were performed using the recently developed geometrical multichain model and the CORSIKA simulation code. The agreement with data on average depth of shower maxima, the falling slope of the maxima distribution, and these distribution widths are found for the very heavy cosmic ray mass spectrum (slightly heavier than expected in the diffusion model at about 3*10**17 eV and similar to the Fly's Eye composition at this energy).Comment: 11pp (9 eps figures

    A model for net-baryon rapidity distribution

    Full text link
    In nuclear collisions, a sizable fraction of the available energy is carried away by baryons. As the baryon number is conserved, the net-baryon BBˉB-\bar{B} retains information on the energy-momentum carried by the incoming nuclei. A simple and consistent model for net-baryon production in high energy proton-proton and nucleus-nucleus collisions is presented. The basic ingredients of the model are valence string formation based on standard PDFs with QCD evolution and string fragmentation via the Schwinger mechanism. The results of the model are presented and compared with data at different centre-of-mass energies and centralities, as well as with existing models. These results show that a good description of the main features of net-baryon data is possible in the framework of a simplistic model, with the advantage of making the fundamental production mechanisms manifest.Comment: 9 pages, 12 figures; in fig. 11 a) the vertical scale was correcte

    Cosmic Ray Air Shower Characteristics in the Framework of the Parton-Based Gribov-Regge Model NEXUS

    Get PDF
    The purpose of this paper is twofold: first we want to introduce a new type of hadronic interaction model (NEXUS), which has a much more solid theoretical basis as, for example, presently used models like QGSJET and VENUS, and ensures therefore a much more reliable extrapolation towards high energies. Secondly, we want to promote an extensive air shower (EAS) calculation scheme, based on cascade equations rather than explicit Monte Carlo simulations, which is very accurate in calculations of main EAS characteristics and extremely fast concerning computing time. We employ the NEXUS model to provide the necessary data on particle production in hadron-air collisions and present the average EAS characteristics for energies 10^14 - 10^17 eV. The experimental data of the casa-blanka group are analyzed in the framework of the new model.Comment: 15 pages, 8 figure
    corecore