255 research outputs found

    Viewpoint dependence and scene context effects generalize to depth rotated three-dimensional objects

    Get PDF
    Viewpoint effects on object recognition interact with object-scene consistency effects. While recognition of objects seen from “noncanonical” viewpoints (e.g., a cup from below) is typically impeded compared to processing of objects seen from canonical viewpoints (e.g., the string-side of a guitar), this effect is reduced by meaningful scene context information. In the present study we investigated if these findings established by using photographic images, generalize to strongly noncanonical orientations of three-dimensional (3D) models of objects. Using 3D models allowed us to probe a broad range of viewpoints and empirically establish viewpoints with very strong noncanonical and canonical orientations. In Experiment 1, we presented 3D models of objects from six different viewpoints (0°, 60°, 120°, 180° 240°, 300°) in color (1a) and grayscaled (1b) in a sequential matching task. Viewpoint had a significant effect on accuracy and response times. Based on the viewpoint effect in Experiments 1a and 1b, we could empirically determine the most canonical and noncanonical viewpoints from our set of viewpoints to use in Experiment 2. In Experiment 2, participants again performed a sequential matching task, however now the objects were paired with scene backgrounds which could be either consistent (e.g., a cup in the kitchen) or inconsistent (e.g., a guitar in the bathroom) to the object. Viewpoint interacted significantly with scene consistency in that object recognition was less affected by viewpoint when consistent scene information was provided, compared to inconsistent information. Our results show that scene context supports object recognition even when using extremely noncanonical orientations of depth rotated 3D objects. This supports the important role object-scene processing plays for object constancy especially under conditions of high uncertainty

    Anomalous transport properties of the halfmetallic ferromagnets Co2TiSi, Co2TiGe, and Co2TiSn

    Full text link
    In this work the theoretical and experimental investigations of Co2TiZ (Z = Si, Ge, or Sn) compounds are reported. Half-metallic ferromagnetism is predicted for all three compounds with only two bands crossing the Fermi energy in the majority channel. The magnetic moments fulfill the Slater-Pauling rule and the Curie temperatures are well above room temperature. All compounds show a metallic like resistivity for low temperatures up to their Curie temperature, above the resistivity changes to semiconducting like behavior. A large negative magnetoresistance of 55% is observed for Co2TiSn at room temperature in an applied magnetic field of 4T which is comparable to the large negative magnetoresistances of the manganites. The Seebeck coefficients are negative for all three compounds and reach their maximum values at their respective Curie temperatures and stay almost constant up to 950 K. The highest value achieved is -52muV/K m for Co2TiSn which is large for a metal. The combination of half-metallicity and the constant large Seebeck coefficient over a wide temperature range makes these compounds interesting materials for thermoelectric applications and further spincaloric investigations.Comment: 4 pages 4 figure

    Epitaxial film growth and magnetic properties of Co_2FeSi

    Full text link
    We have grown thin films of the Heusler compound Co_2FeSi by RF magnetron sputtering. On (100)-oriented MgO substrates we find fully epitaxial (100)-oriented and L2_1 ordered growth. On Al_2O_3 (11-20) substrates, the film growth is (110)-oriented, and several in-plane epitaxial domains are observed. The temperature dependence of the electrical resistivity shows a power law with an exponent of 7/2 at low temperatures. Investigation of the bulk magnetic properties reveals an extrapolated saturation magnetization of 5.0 mu_B/fu at 0 K. The films on Al_2O_3 show an in-plane uniaxial anisotropy, while the epitaxial films are magnetically isotropic in the plane. Measurements of the X-ray magnetic circular dichroism of the films allowed us to determine element specific magnetic moments. Finally we have measured the spin polarization at the surface region by spin-resolved near-threshold photoemission and found it strongly reduced in contrast to the expected bulk value of 100%. Possible reasons for the reduced magnetization are discussed.Comment: 9 pages, 12 figure

    April 15, 2009

    Get PDF
    The properties of iron nanostructures prepared by shallow incidence molecular beam epitaxy on faceted ?-Al2O3 (100) (m plane) are described. Depending on the angle of deposition with regard to the sapphire surface, the morphology of the structures reaches from pearl-necklet-like strung nanodrops to laced nanowires. Crystallographic measurements reveal at least four epitaxial close to (211)-oriented twins. Magnetization measurements performed at room temperature in a vibrating sample magnetometer and magneto-optical Kerr rotation measurements reveal an easy axis of magnetization close to the facet ridges. Still, the shape of the hysteresis loops depends strongly on the morphology of the samples. The magnetization reversal process can be described by the formation of a magnetic vortex structure

    Ion beam induced modification of exchange interaction and spin-orbit coupling in the Co2_2FeSi Heusler compound

    Full text link
    A Co2_2FeSi (CFS) film with L21_1 structure was irradiated with different fluences of 30 keV Ga+^+ ions. Structural modifications were subsequently studied using the longitudinal (LMOKE) and quadratic (QMOKE) magneto-optical Kerr effect. Both the coercivity and the LMOKE amplitude were found to show a similar behavior upon irradiation: they are nearly constant up to ion fluences of 6×1015\approx6\times10^{15} ion/cm2^2, while they decrease with further increasing fluences and finally vanish at a fluence of 9×1016\approx9\times10^{16} ion/cm2^2, when the sample becomes paramagnetic. However, contrary to this behavior, the QMOKE signal nearly vanishes even for the smallest applied fluence of 3×10143\times10^{14} ion/cm2^2. We attribute this reduction of the QMOKE signal to an irradiation-induced degeneration of second or higher order spin-orbit coupling, which already happens at small fluences of 30 keV Ga+^+ ions. On the other hand, the reduction of coercivity and LMOKE signal with high ion fluences is probably caused by a reduction of the exchange interaction within the film material

    High energy, high resolution photoelectron spectroscopy of Co2Mn(1-x)Fe(x)Si

    Full text link
    This work reports on high resolution photoelectron spectroscopy for the valence band of Co2Mn(1-x)Fe(x)Si (x=0,0.5,1) excited by photons of about 8 keV energy. The measurements show a good agreement to calculations of the electronic structure using the LDA+U scheme. It is shown that the high energy spectra reveal the bulk electronic structure better compared to low energy XPS spectra. The high resolution measurements of the valence band close to the Fermi energy indicate the existence of the gap in the minority states for all three alloys.Comment: 14 pages, 5 figures, submitted to J. Phys. D: Appl. Phy

    Patients with Acute Limb Ischemia Might Benefit from Endovascular Therapy—A 17-Year Retrospective Single-Center Series of 985 Patients

    Get PDF
    Acute lower limb ischemia (ALI) is a common vascular emergency, requiring urgent revascularization by open or endovascular means. The aim of this retrospective study was to evaluate patient demographics, treatment and periprocedural variables affecting the outcome in ALI patients in a consecutive cohort in a tertiary referral center. Primary outcome events (POE) were 30-day (safety) and 180-day (efficacy) combined mortality and major amputation rates, respectively. Secondary outcomes were perioperative medical and surgical leg-related complications and the 5-year combined mortality and major amputation rate. Statistical analysis used descriptive and uni- and multivariable Cox regression analysis. In 985 patients (71 ± 9 years, 56% men) from 2004 to 2020, the 30-day and 180-day combined mortality and major amputation rates were 15% and 27%. Upon multivariable analysis, older age (30 d: aHR 1.17; 180 d: 1.27) and advanced Rutherford ischemia stage significantly worsened the safety and efficacy POE (30 d: TASC IIa aHR 3.29, TASC IIb aHR 3.93, TASC III aHR 7.79; 180 d: TASC IIa aHR 1.97, TASC IIb aHR 2.43, TASC III aHR 4.2), while endovascular treatment was associated with significant improved POE after 30 days (aHR 0.35) and 180 days (aHR 0.39), respectively. Looking at five consecutive patient quintiles, a significant increase in endovascular procedures especially in the last quintile could be observed (17.5% to 39.5%, p < 0.001). Simultaneously, the re-occlusion rate as well as the number of patients with any previous revascularization increased. In conclusion, despite a slightly increasing early re-occlusion rate, endovascular treatment might, if possible, be favorable in ALI treatment

    Tuning of crystal structure and magnetic properties by exceptionally large epitaxial strains

    Full text link
    Huge deformations of the crystal lattice can be achieved in materials with inherent structural instability by epitaxial straining. By coherent growth on seven different substrates the in-plane lattice constants of 50 nm thick Fe70Pd30 films are continuously varied. The maximum epitaxial strain reaches 8,3 % relative to the fcc lattice. The in-plane lattice strain results in a remarkable tetragonal distortion ranging from c/abct = 1.09 to 1.39, covering most of the Bain transformation path from fcc to bcc crystal structure. This has dramatic consequences for the magnetic key properties. Magnetometry and X-ray circular dichroism (XMCD) measurements show that Curie temperature, orbital magnetic moment, and magnetocrystalline anisotropy are tuned over broad ranges.Comment: manuscript, 3 figures, auxiliary materia
    corecore