28 research outputs found

    X-ray imaging with Micromegas detectors with optical readout

    Full text link
    In the last years, optical readout of Micromegas gaseous detectors has been achieved by implementing a Micromegas detector on a glass anode coupled to a CMOS camera. Effective X-ray radiography was demonstrated using integrated imaging approach. High granularity values have been reached for low-energy X-rays from radioactive sources and X-ray generators. Detector characterization with X-ray radiography has led to two applications: neutron imaging for non-destructive examination of highly gamma-ray emitting objects and beta imaging for the single cell activity tagging in the field of oncology drug studies. First measurements investigating the achievable spatial resolution of the glass Micromegas detector at the SOLEIL synchrotron facility with a high-intensity and flat irradiation field will be shown in this article.Comment: 6 pages, 4 figures, 7th International Conference on Micro Pattern Gaseous Detectors, 11-16 December 20223, Weizmann Institute of Science, Rehovot, Israe

    Precise timing and recent advancements with segmented anode PICOSEC Micromegas prototypes

    Full text link
    Timing information in current and future accelerator facilities is important for resolving objects (particle tracks, showers, etc.) in extreme large particles multiplicities on the detection systems. The PICOSEC Micromegas detector has demonstrated the ability to time 150\,GeV muons with a sub-25\,ps precision. Driven by detailed simulation studies and a phenomenological model which describes stochastically the dynamics of the signal formation, new PICOSEC designs were developed that significantly improve the timing performance of the detector. PICOSEC prototypes with reduced drift gap size (\sim\SI{119}{\micro\metre}) achieved a resolution of 45\,ps in timing single photons in laser beam tests (in comparison to 76\,ps of the standard PICOSEC detector). Towards large area detectors, multi-pad PICOSEC prototypes with segmented anodes has been developed and studied. Extensive tests in particle beams revealed that the multi-pad PICOSEC technology provides also very precise timing, even when the induced signal is shared among several neighbouring pads. Furthermore, new signal processing algorithms have been developed, which can be applied during data acquisition and provide real time, precise timing.Comment: 5 pages, 3 figures, 12th International Conference on Position Sensitive Detector

    The ENUBET monitored neutrino beam: moving towards the implementation of a high precision cross section experiment at CERN

    Get PDF
    Monitored neutrino beams represent a powerful and cost effective tool to suppress cross section related systematics for the full exploitation of data collected in long baseline oscillation projects like DUNE and Hyper-Kamiokande. In the last years the NP06/ENUBET project has demonstrated that the systematic uncertainties on the neutrino flux can be suppressed to 1% in an accelerator based facility where charged leptons produced in kaon and pion decays are monitored in an instrumented decay tunnel. This contribution will present the final design of the ENUBET beamline, the experimental setup for high purity identification of charged leptons in the tunnel instrumentation and the framework for the assessment of the final systematics budget on the neutrino fluxes. We will also present the results of a test beam exposure at CERN-PS of the Demonstrator: a fully instrumented 1.65 m long section of the ENUBET instrumented decay tunnel. Finally the physics potential of the ENUBET beam with ProtoDUNEs as neutrino detectors and plans for its implementation in the CERN North Area will be discussed

    Monitored neutrino beams: NP06/ENUBET

    Get PDF
    The main source of systematic uncertainty on neutrino cross section measurements at the GeV scale is represented by the poor knowledge of the initial flux. The goal of cutting down this uncertainty to 1% can be achieved through the monitoring of charged leptons produced in association with neutrinos, by properly instrumenting the decay region of a conventional narrow-band neutrino beam. The ENUBET project has been funded by the ERC in 2016 to prove the feasibility of such a monitored neutrino beam and is cast in the framework of the CERN Neutrino Platform (NP06) and the Physics Beyond Colliders initiative. This contribution reports the final design of the horn-less beamline able to deliver a meson yield large enough to perform a ve cross section measurement at 1% precision in about 3 years of data taking at CERN-SPS with a ProtoDUNE-like detector. The final configuration of the tunnel instrumentation and its implementation on a large-scale prototype, the Demonstrator, are also described. Finally the particle identification performance is presented together with the first assessment of the lepton monitoring impact in the reduction of the hadroproduction systematics on the neutrino flux

    Design and performance of the ENUBET monitored neutrino beam

    Get PDF
    The ENUBET project is aimed at designing and experimentally demonstrating the concept of monitored neutrino beams. These novel beams are enhanced by an instrumented decay tunnel, whose detectors reconstruct large-angle charged leptons produced in the tunnel and give a direct estimate of the neutrino flux at the source. These facilities are thus the ideal tool for high-precision neutrino cross-section measurements at the GeV scale because they offer superior control of beam systematics with respect to existing facilities. In this paper, we present the first end-to-end design of a monitored neutrino beam capable of monitoring lepton production at the single particle level. This goal is achieved by a new focusing system without magnetic horns, a 20 m normal-conducting transfer line for charge and momentum selection, and a 40 m tunnel instrumented with cost-effective particle detectors. Employing such a design, we show that percent precision in cross-section measurements can be achieved at the CERN SPS complex with existing neutrino detectors

    X-ray imaging with Micromegas detectors with optical readout

    No full text
    International audienceIn the last years, optical readout of Micromegas gaseous detectors has been achieved by implementing a Micromegas detector on a glass anode coupled to a CMOS camera. Effective X-ray radiography was demonstrated using integrated imaging approach. High granularity values have been reached for low-energy X-rays from radioactive sources and X-ray generators. Detector characterization with X-ray radiography has led to two applications: neutron imaging for non-destructive examination of highly gamma-ray emitting objects and beta imaging for the single cell activity tagging in the field of oncology drug studies. First measurements investigating the achievable spatial resolution of the glass Micromegas detector at the SOLEIL synchrotron facility with a high-intensity and flat irradiation field will be shown in this article

    Sub-25 ps timing measurements with 10 × 10 cm2 PICOSEC Micromegas detectors

    No full text
    The PICOSEC Micromegas detector is a precise timing gaseous detector based on a Cherenkov radiator coupled to a semi-transparent photocathode and a Micromegas amplifying structure. First single-pad prototypes demonstrated a time resolution below = 25 ps, however, to make the concept appropriate to physics applications, several developments are required. The objective of this work was to achieve an equivalent time resolution for a 10 × 10 cm2 area PICOSEC Micromegas detector. The prototype was designed, produced and tested in the laboratory and successfully operated with a 80 GeV/c muon beam. Preliminary results for this device equipped with a CsI photocathode demonstrated a time resolution below = 25 ps for all measured pads. The time resolution was reduced to be below = 18 ps by decreasing the drift gap to 180 μm and using dedicated RF amplifier cards as new electronics. The excellent timing performance of the single-channel proof of concept was not only transferred to the 100-channel prototype, but even improved, making the PICOSEC Micromegas detector more suitable for large-area experiments in need of detectors with high time resolutions.Peer reviewe

    Single channel PICOSEC Micromegas detector with improved time resolution

    No full text
    This paper presents design guidelines and experimental verification of a single-channel PICOSEC Micromegas (MM) detector with an improved time resolution. The design encompasses the detector board, vessel, auxiliary mechanical parts, and electrical connectivity for high voltage (HV) and signals, focusing on improving stability, reducing noise, and ensuring signal integrity to optimize timing performance. A notable feature is the simple and fast reassembly procedure, facilitating quick replacement of detector internal components that allows for an efficient measurement strategy involving different detector components. The paper also examines the influence of parasitics on the output signal integrity. To validate the design, a prototype assembly and three interchangeable detector boards with varying readout pad diameters were manufactured. The detectors were initially tested in the laboratory environment. Finally, the timing performance of detectors with different pad sizes was verified using a Minimum Ionizing Particle (MIP) beam test. Notably, a record time resolution for a PICOSEC Micromegas detector technology with a CsI photocathode of 12.5±\pm0.8 ps was achieved with a 10 mm diameter readout pad size detector

    A large area 100 channel Picosec Micromegas detector with sub 20 ps time resolution

    No full text
    International audienceThe PICOSEC Micromegas precise timing detector is based on a Cherenkov radiator coupled to a semi-transparent photocathode and a Micromegas amplification structure. The first proof of concept single-channel small area prototype was able to achieve time resolution below 25 ps. One of the crucial aspects in the development of the precise timing gaseous detectors applicable in high-energy physics experiments is a modular design that enables large area coverage. The first 19-channel multi-pad prototype with an active area of approximately 10 cm2 suffered from degraded timing resolution due to the non-uniformity of the preamplification gap. A new 100 cm2 detector module with 100 channels based on a rigid hybrid ceramic/FR4 Micromegas board for improved drift gap uniformity was developed. Initial measurements with 80 GeV/c muons showed improvements in timing response over measured pads and a time resolution below 25 ps. More recent measurements with a new thinner drift gap detector module and newly developed RF pulse amplifiers show that the resolution can be enhanced to a level of 17 ps. This work will present the development of the detector from structural simulations, design, and beam test commissioning with a focus on the timing performance of a thinner drift gap detector module in combination with new electronics using an automated timing scan method

    A Monitored Neutrino Beam at the European Spallation Source

    No full text
    Monitored neutrino beams are facilities where beam diagnostics enable the counting and identification of charged leptons in the decay tunnel of a narrow band beam. These facilities can monitor neutrino production at the single particle level (flux precision %) and provide information about the neutrino energy at the 10% level. The ENUBET Collaboration has demonstrated that lepton monitoring might be achieved not only by employing kaon decays but also by identifying muons from the decays and positrons from the decay-in-flight of muons before the hadron dump. As a consequence, beam monitoring can be performed using the ENUBET technique even when the kaon production yield is kinematically suppressed. This finding opens up a wealth of opportunities for measuring neutrino cross-sections below 1 GeV. In this paper, we investigate this opportunity at the European Spallation Source (ESS), which is an ideal facility to measure and cross-sections in the 0.2–1 GeV range. We also describe the planned activities for the design of this beam at the ESS within the framework of the ESSSB+ design study, which was approved by the EU in July 2022
    corecore