535 research outputs found

    Optical quality assurance of GEM foils

    Full text link
    An analysis software was developed for the high aspect ratio optical scanning system in the Detec- tor Laboratory of the University of Helsinki and the Helsinki Institute of Physics. The system is used e.g. in the quality assurance of the GEM-TPC detectors being developed for the beam diagnostics system of the SuperFRS at future FAIR facility. The software was tested by analyzing five CERN standard GEM foils scanned with the optical scanning system. The measurement uncertainty of the diameter of the GEM holes and the pitch of the hole pattern was found to be 0.5 {\mu}m and 0.3 {\mu}m, respectively. The software design and the performance are discussed. The correlation between the GEM hole size distribution and the corresponding gain variation was studied by comparing them against a detailed gain mapping of a foil and a set of six lower precision control measurements. It can be seen that a qualitative estimation of the behavior of the local variation in gain across the GEM foil can be made based on the measured sizes of the outer and inner holes.Comment: 12 pages, 29 figure

    The circulatory and metabolic responses to hypoxia in humans - with special reference to adipose tissue physiology and obesity

    Get PDF
    Adipose tissue metabolism and circulation play an important role in human health. It is well-known that adipose tissue mass is increased in response to excess caloric intake leading to obesity and further to local hypoxia and inflammatory signaling. Acute exercise increases blood supply to adipose tissue and mobilization of fat stores for energy. However, acute exercise during systemic hypoxia reduces subcutaneous blood flow in healthy young subjects, but the response in overweight or obese subjects remains to be investigated. Emerging evidence also indicates that exercise training during hypoxic exposure may provide additive benefits with respect to many traditional cardiovascular risk factors as compared to exercise performed in normoxia, but unfavorable effects of hypoxia have also been documented. These topics will be covered in this brief review dealing with hypoxia and adipose tissue physiology

    Search for highly-ionizing particles in pp collisions at the LHC's Run-1 using the prototype MoEDAL detector

    Get PDF
    A search for highly electrically charged objects (HECOs) and magnetic monopoles is presented using 2.2 fb(-1) of p - p collision data taken at a centre of mass energy (E-CM) of 8 TeV by the MoEDAL detector during LHC's Run-1. The data were collected using MoEDAL's prototype Nuclear Track Detectord array and the Trapping Detector array. The results are interpreted in terms of Drell-Yan pair production of stable HECO and monopole pairs with three spin hypotheses (0, 1/2 and 1). The search provides constraints on the direct production of magnetic monopoles carrying one to four Dirac magnetic charges and with mass limits ranging from 590 GeV/c(2) to 1 TeV/c(2). Additionally, mass limits are placed on HECOs with charge in the range 10e to 180e, where e is the charge of an electron, for masses between 30 GeV/c(2) and 1 TeV/c(2).Peer reviewe

    The Circulatory and Metabolic Responses to Hypoxia in Humans - With Special Reference to Adipose Tissue Physiology and Obesity

    Get PDF
    Adipose tissue metabolism and circulation play an important role in human health. It is well-known that adipose tissue mass is increased in response to excess caloric intake leading to obesity and further to local hypoxia and inflammatory signaling. Acute exercise increases blood supply to adipose tissue and mobilization of fat stores for energy. However, acute exercise during systemic hypoxia reduces subcutaneous blood flow in healthy young subjects, but the response in overweight or obese subjects remains to be investigated. Emerging evidence also indicates that exercise training during hypoxic exposure may provide additive benefits with respect to many traditional cardiovascular risk factors as compared to exercise performed in normoxia, but unfavorable effects of hypoxia have also been documented. These topics will be covered in this brief review dealing with hypoxia and adipose tissue physiology

    Seven-day ischaemic preconditioning improves muscle efficiency during cycling

    Get PDF
    Ischaemic preconditioning (IPC) has emerged as a potential non-invasive ergogenic aid to enhance exercise performance. Repeated application of IPC has demonstrated clinical efficacy, therefore our aims were to investigate its effect on endurance cycling performance and muscle efficiency. Twenty participants undertook 7-d repeated bilateral lower limb occlusion (4 x 5-min) of IPC (220 mmHg) or sham (20 mmHg). Prior to and 72-h following the intervention, participants performed submaximal cycling at 70, 80 and 90% of ventilatory threshold (VT) followed by an incremental exercise test. IPC had no effect on VO2max (P = 0.110); however, time to exhaustion increased by ~ 9% and Wmax by ~ 5 % (IPC pre 307 ± 45 to post 323 ± 51 W) relative to sham (P = 0.002). There were no changes in gross efficiency (GE) (P > 0.05); however, delta efficiency (DE) increased by 3.1% following IPC (P = 0.011). Deoxyhaemoglobin (HHb) was reduced following IPC ~ 30% (P = 0.017) with no change in total haemoglobin (tHb). Repeated IPC over 7-d enhanced muscle efficiency and extended cycling performance. The physiological effects of repeated IPC on skeletal muscle efficiency explains the notable improvements in endurance performance

    Quality assessment of cadmium telluride as a detector material for multispectral medical imaging

    Get PDF
    Cadmiumtelluride (CdTe) is a high-Z material with excellent photon radiation absorption properties, making it a promising material to include in radiation detection technologies. However, the brittleness of CdTe crystals as well as their varying concentration of defects necessitate a thorough quality assessment before the complex detector processing procedure. We present our quality assessment of CdTe as a detector material for multispectralmedical imaging, a research which is conducted as part of the Consortium Project Multispectral Photon-counting for Medical Imaging and Beam characterization (MPMIB). The aim of the project is to develop novel CdTe detectors and obtain spectrum-per-pixel information that make the distinction between different radiation types and tissues possible. To evaluate the defect density inside the crystals - which can deteriorate the detector performance - we employ infrared microscopy (IRM). Posterior data analysis allows us to visualise the defect distributions as 3D defect maps. Additionally, we investigate front and backside differences of the material with current-voltage (IV) measurements to determine the preferred surface for the pixelisation of the crystal, and perform test measurements with the prototypes to provide feedback for further processing. We present the different parts of our quality assessment chain and will close with first experimental results obtained with one of our prototype photon-counting detectors in a small tomographic setup.Peer reviewe

    The LAGUNA design study- towards giant liquid based underground detectors for neutrino physics and astrophysics and proton decay searches

    Get PDF
    The feasibility of a next generation neutrino observatory in Europe is being considered within the LAGUNA design study. To accommodate giant neutrino detectors and shield them from cosmic rays, a new very large underground infrastructure is required. Seven potential candidate sites in different parts of Europe and at several distances from CERN are being studied: Boulby (UK), Canfranc (Spain), Fr\'ejus (France/Italy), Pyh\"asalmi (Finland), Polkowice-Sieroszowice (Poland), Slanic (Romania) and Umbria (Italy). The design study aims at the comprehensive and coordinated technical assessment of each site, at a coherent cost estimation, and at a prioritization of the sites within the summer 2010.Comment: 5 pages, contribution to the Workshop "European Strategy for Future Neutrino Physics", CERN, Oct. 200

    Myocardial perfusion reserve compared with peripheral perfusion reserve: A [13N]ammonia PET study

    Get PDF
    INTRODUCTION: [13N]ammonia PET allows quantification of myocardial perfusion. The similarity between peripheral flow and myocardial perfusion is unclear. We compared perfusion flow in the myocardium with the upper limb during rest and adenosine stress [13N]ammonia PET to establish whether peripheral perfusion reserve (PPR) correlates with MPR. METHODS: [13N]ammonia myocardial perfusion PET-scans of 58 patients were evaluated (27 men, 31 women, age 64 ± 13 years) and were divided in four subgroups: patients with coronary artery disease (CAD, n = 15), cardiac syndrome X (SX, n = 14), idiopathic dilating cardiomyopathy (DCM, n = 16), and normal controls (NC, n = 13). Peripheral limb perfusion was measured in the muscular tissue of the proximal upper limb and quantified through a 2-tissue-compartment model and the PPR was calculated (stress/rest ratio). MPR was also calculated by a 2-tissue-compartment model. The PPR results were compared with the MPR findings. RESULTS: Mean myocardial perfusion increased significantly in all groups as evidenced by the MPR (CAD 1.99 ± 0.47; SX 1.39 ± 0.31; DCM 1.72 ± 0.69; NC 2.91 ± 0.78). Mean peripheral perfusion also increased but not significantly and accompanied with great variations within and between groups (mean PPR: CAD 1.30 ± 0.79; SX 1.36 ± 0.71; DCM 1.60 ± 1.22; NC 1.27 ± 0.63). The mean difference between PPR and MPR for all subpopulations varied widely. No significant correlations in flow reserve were found between peripheral and myocardial microcirculatory beds in any of the groups (Total group: r = -0.07, SEE = 0.70, CAD: r = 0.14, SEE = 0.48, SX: r = 0.17, SEE = 0.30, DCM: r = -0.11, SEE = 0.71, NC: r = -0.19, SEE = 0.80). CONCLUSION: No correlations between myocardial and peripheral perfusion (reserve) were found in different patient populations in the same PET session. This suggests a functional difference between peripheral and myocardial flow in the response to intravenously administered adenosine stress

    Predicting Skeletal Muscle and Whole-Body Insulin Sensitivity Using NMR-Metabolomic Profiling

    Get PDF
    Purpose: Abnormal lipoprotein and amino acid profiles are associated with insulin resistance and may help to identify this condition. The aim of this study was to create models estimating skeletal muscle and whole-body insulin sensitivity using fasting metabolite profiles and common clinical and laboratory measures.Material and Methods: The cross-sectional study population included 259 subjects with normal or impaired fasting glucose or type 2 diabetes in whom skeletal muscle and whole-body insulin sensitivity (M-value) were measured during euglycemic hyperinsulinemic clamp. Muscle glucose uptake (GU) was measured directly using [F-18]FDG-PET. Serum metabolites were measured using nuclear magnetic resonance (NMR) spectroscopy. We used linear regression to build the models for the muscle GU (Muscle-insulin sensitivity index [ISI]) and M-value (whole-body [WB]-ISI). The models were created and tested using randomly selected training (n = 173) and test groups (n = 86). The models were compared to common fasting indices of insulin sensitivity, homeostatic model assessment-insulin resistance (HOMA-IR) and the revised quantitative insulin sensitivity check index (QUICKI).Results: WB-ISI had higher correlation with actual M-value than HOMA-IR or revised QUICKI (rho = 0.83 vs -0.67 and 0.66; P < 0.05 for both comparisons), whereas the correlation of Muscle-ISI with the actual skeletal muscle GU was not significantly stronger than HOMA-IR's or revised QUICKI's (rho = 0.67 vs -0.58 and 0.59; both nonsignificant) in the test dataset.Conclusion: Muscle-ISI and WB-ISI based on NMR-metabolomics and common laboratory measurements from fasting serum samples and basic anthropometrics are promising rapid and inexpensive tools for determining insulin sensitivity in at-risk individuals. (C) Endocrine Society 2020

    Effects of Different Exercise Training Protocols on Gene Expression of Rac1 and PAK1 in Healthy Rat Fast- and Slow-Type Muscles

    Get PDF
    Purpose Rac1 and its downstream target PAK1 are novel regulators of insulin and exercise-induced glucose uptake in skeletal muscle. However, it is not yet understood how different training intensities affect the expression of these proteins. Therefore, we studied the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on Rac1 and PAK1 expression in fast-type (gastrocnemius, GC) and slow-type (soleus, SOL) muscles in rats after HIIT and MICT swimming exercises. Methods The mRNA expression was determined using qPCR and protein expression levels with reverse-phase protein microarray (RPPA). Results HIIT significantly decreased Rac1 mRNA expression in GC compared to MICT (p = 0.003) and to the control group (CON) (p = 0.001). At the protein level Rac1 was increased in GC in both training groups, but only the difference between HIIT and CON was significant (p = 0.02). HIIT caused significant decrease of PAK1 mRNA expression in GC compared to MICT (p = 0.007) and to CON (p = 0.001). At the protein level, HIIT increased PAK1 expression in GC compared to MICT and CON (by similar to 17%), but the difference was not statistically significant (p = 0.3, p = 0.2, respectively). There were no significant differences in the Rac1 or PAK1 expression in SOL between the groups. Conclusion Our results indicate that HIIT, but not MICT, decreases Rac1 and PAK1 mRNA expression and increases the protein expression of especially Rac1 but only in fast-type muscle. These exercise training findings may reveal new therapeutic targets to treat patients with metabolic diseases
    corecore