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Adipose tissue metabolism and circulation play an important role in human health. It is 
well-known that adipose tissue mass is increased in response to excess caloric intake 
leading to obesity and further to local hypoxia and inflammatory signaling. Acute exer-
cise increases blood supply to adipose tissue and mobilization of fat stores for energy. 
However, acute exercise during systemic hypoxia reduces subcutaneous blood flow in 
healthy young subjects, but the response in overweight or obese subjects remains to 
be investigated. Emerging evidence also indicates that exercise training during hypoxic 
exposure may provide additive benefits with respect to many traditional cardiovascular 
risk factors as compared to exercise performed in normoxia, but unfavorable effects of 
hypoxia have also been documented. These topics will be covered in this brief review 
dealing with hypoxia and adipose tissue physiology.
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GeneRAL CARDiOvASCULAR AnD MeTABOLiC  
ReSPOnSeS TO HYPOXiA

A large body of knowledge on the physiological effects of hypoxia has been obtained over several 
decades from field experiments in the mountains as well as from studies in environmental cham-
bers, where ambient air is manipulated. Hypoxia, defined as reduced or insufficient oxygen supply 
caused by reduced oxygen saturation of arterial blood, results in cardiovascular system adjustments 
to deliver more blood to tissues to compensate for reduced oxygen delivery, which is sensed by 
oxygen-sensing mechanisms, such as carotid bodies (1). The acute central cardiovascular response 
to hypoxic stress triggers an increased heart rate at an unchanged stroke volume mediated primarily 
by increased sympathetic neural discharge as a function of increasing hypoxic severity. At rest, 
lower levels of hypoxic exposure may result in some degree of systemic vasodilation, while with 
increasing severity of hypoxia, the peripheral vasculature constricts to redistribute oxygen delivery 
to the most critically dependent organs, e.g., heart (2–5), brain (6–8) needs to be ensured. This 
regulation is exacerbated in obstructive sleep apnea, which creates a physiological condition called 
chronic intermittent hypoxia, which may compromise some functions of the body. Similarly, dur-
ing exercise in hypoxia, perfusion of skeletal muscle is increased to match oxygen demand, which 
creates circulatory competition between the locomotor skeletal muscles and other organs, and leads 
to decreased exercise capacity with severity of hypoxia.

In addition to cardiovascular stress, hypoxia also alters energy metabolism of the body 
(Figure 1). Although hypoxia might theoretically even slightly decrease the oxygen requirements 
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FiGURe 1 | The effects of obesity, acute exercise, hypoxic or altitude exposure, and endurance training on adipose tissue, such as subcutaneous 
adipose tissue, surrounding thigh musculature as illustrated by the fusion image in the middle of the figure obtained by combining magnetic 
resonance and positron emission tomography imaging. Obesity induces negative (red arrow) inflammatory state in adipose tissue connected with capillary 
rarefaction and local hypoxia. Acute low or moderate intensity exercise is on the other hand capable of increasing adipose tissue blood flow and metabolism, which, 
in the long run, reduces adipose tissue cell size and inflammation. This effect may be potentiated by hypoxic exposure or altitude training, but scientific evidence is 
still in its infancy to prove this hypothesis correct. It also remains to be investigated to what extent classical endurance training can affect adipose tissue blood flow 
and metabolism in humans.

2

Heinonen et al. Hypoxic Responses in Humans

Frontiers in Endocrinology | www.frontiersin.org August 2016 | Volume 7 | Article 116

at the local tissue level due to reduced oxygen supply, increased 
sympathetic neural activation and resulting release of vari-
ous stress hormones often cause whole body metabolism to 
increase in response to hypoxia (9–14). It has been postulated 
that, particularly, glucose uptake might be favorably affected 
by hypoxia (13–17), which has implications for the prevention 
and treatment of disease states, where metabolism is deranged, 
such as in diabetes. Not every study, however, supports that 
view, as decreased skeletal muscle insulin sensitivity (18) and 
impaired lipid metabolism (19) have also been reported after 
chronic hypoxic exposures. Hypoxia also alters adipose tissue 
circulation, which plays an integral role in its metabolism and, 
therefore, has implications for obesity and diabetes.

HYPOXiA AnD ADiPOSe TiSSUe 
CiRCULATiOn AnD MeTABOLiSM

Adipose tissue has an important role in regulating metabolism 
(20–22) – a topic of growing interest as levels of obesity have 
increased globally over the last several decades. Adipose tissue 
vasculature and oxygen supply is an important determinant of 
its  metabolism as well as endocrine function (23, 24). Despite 
the fact that adipose tissue has a capillary surface area less than 
one-third of that in skeletal muscle (24), it has long been acknowl-
edged that also adipocytes are surrounded by an extensive net-
work of capillaries (23). This vascular feature importantly affects 
the adaptability of subcutaneous adipose tissue to excess caloric 
overload, which is known to be associated with a hypoxic state in 
adipose tissue (25–27). Thus, although opposite views have also 

been presented (28), it is the common consensus that due to the 
insufficient blood supply and capillary rarefaction connected with 
tissue inflammation (20, 25, 29–35), chronic low oxygen levels in 
expanded adipose tissue is now well appreciated to contribute to 
metabolic derangements of the whole body.

Although there is also a noticeable extent of variability in 
physiological responses to hypoxia in humans (36), particularly 
white adipose tissue is known to respond remarkably to low 
levels of oxygen. This fact is well illustrated by cell culture 
studies, where exposure of adipocytes to low oxygen levels 
alters the gene expression of over 1000 genes (25). However, no 
change in subcutaneous adipose tissue blood flow is necessarily 
observed at rest in humans in response to moderate systemic 
hypoxia (37). Adipose tissue blood flow in humans is under 
the regulation of the sympathetic nervous system (38), and 
it is, therefore, reasonable to assume that moderate systemic 
hypoxia simply does not create a high enough stimulus for 
sympathetic neural vasoconstrictor activation to reduce blood 
flow in healthy human adipose tissue. On the other hand, it is 
also plausible that the activation of vasoconstriction by arterial 
chemoreceptors predominates over a local hypoxic vasodila-
tion in adipose tissue in humans. In this regard, adipose tissue 
appears to be similar to bone (39). However, increased blood 
flow in response to systemic hypoxia has been documented in 
human skin (40). More studies are clearly warranted to explore 
whether unchanged hypoxic blood flow is also of importance 
to explain pathophysiological characteristics of adipose tissue 
under chronically low oxygen levels that is not compensated by 
increased blood flow (20, 25).
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It is known that subcutaneous adipose tissue blood flow 
increases in response to low intensity exercise, but levels off when 
exercise intensity is further increased (41). Furthermore, at rest, 
but not during exercise, subcutaneous adipose blood flow is under 
the control of nitric oxide (42). In contrast to resting conditions, 
subcutaneous adipose blood flow is reduced during exercise, 
when subjects breathe hypoxic air (37). This novel finding is 
likely based on the constriction of adipose tissue vasculature by 
hypoxia-triggered enhanced sympathetic nervous system activity, 
which redistributes limb blood flow to exercising muscles, which 
depend more critically on adequate oxygen supply in response to 
exercise. In this regard, we have previously reported that blood 
flow in subcutaneous adipose tissue is significantly lowered by 
local infusion of norepinephrine, which is the principal neuro-
transmitter released from the sympathetic nerve endings, and 
that the inhibition of α-adrenergic receptors by phentolamine 
tends to enhance adipose tissue blood flow, both at rest and dur-
ing exercise (38). It has also been previously suggested by Romijn 
et al. (43) that the reduction of adipose tissue blood flow is likely 
to be one important mechanism to explain decreased free-fatty 
acid release in response to high intensity exercise, which then 
leads to preferential utilization of glucose instead of fatty acids 
and contributes to the increased efficiency of ATP generation 
for a limited O2 availability. Additionally, it has been recently 
documented that the inability to increase vascular resistance in 
adipose tissue during exercise or to maintain mean arterial pres-
sure during orthostatic stress in aging is largely a result of reduced 
α-adrenergic responsiveness of adipose tissue arterioles (44, 45). 
Therefore, it is concluded that reduced blood flow in adipose 
tissue is an acute physiological response to diminished oxygen 
availability during exercise, while higher blood flow in adipose 
tissue is needed in response to prolonged exercise that also likely 
associates with higher lipolysis to supply more free-fatty acids into 
circulation to sustain muscular work for prolonged periods (46).

In addition to the general hypoxic responses, the capacity of 
blood flow in human subcutaneous adipose tissue has remained 
largely unexplored, until recently. In this regard, a novel finding 
is that the vasodilatory capacity of human subcutaneous adipose 
tissue determined by infusion of exogenous dilator compounds 
approaches the physiological level reached during moderate 
intensity exercise (37). Furthermore, during this maximal 
vasodilation, vascular conductance can reach a level even higher 
than that induced by exercise. In terms of absolute values, the 
comparison of adipose tissue blood flow capacity to skeletal mus-
cle is also of interest. In this regard, we have previously reported 
that blood flow in human skeletal muscle during a similar phar-
macological vasodilation protocol increases to a level of 40 ml/
min/100 g (47). As the absolute average value of pharmacologi-
cally induced adipose tissue blood flow was 10.5 ml/min/100 g, it 
only reaches ~26% of blood flow level in the muscle. Accordingly, 
the functional vascular capacity appears to be very closely fol-
lowed by that of structural anatomy, as adipose tissue is known 
to have a capillary surface area that is slightly less than one-third 
than that in skeletal muscle (24). In relative terms, blood flow in 
adipose tissue increased 8-fold and blood flow in muscle 14-fold 
in response to pharmacological (adenosine) infusion, and, as 
such, the increase in adipose tissue flow is 57% of that of muscle. 

In contrast to human skeletal muscle (47), pharmacologically 
induced blood flow is not, however, positively and significantly 
related to subjects’ whole body maximal oxygen consumption 
determined in a separate fitness test, indicating that blood flow 
in adipose tissue and muscle do not simply parallel each other. 
Nevertheless, it can be concluded, based on these studies, that 
the functional blood flow capacity of adipose tissue is fairly large 
in healthy human subjects. It remains, however, to be measured 
if this capacity is lost in pathological states. Furthermore, it also 
remains to be determined if a loss of functional vascular capacity 
is linked to impaired fat storage in white adipose tissue which is 
known to contribute to metabolic and cardiovascular derange-
ments in a human body (20).

HYPOXiA AS A TReATMenT OF OBeSiTY 
AnD iMPAiReD ADiPOSe TiSSUe 
PHYSiOLOGY?

As summarized in the beginning of the previous section, it is 
evident that there is a hypoxic state in adipose tissue of obese 
subjects, which may be caused by insufficient circulatory 
responses/adaptations in response to lowered oxygen supply. 
Despite this, chronic and/or intermittent hypoxia has also been 
suggested as treatment option for overweight and obesity (9, 10). 
This is based on findings that hypoxia alters the function of the 
nervous system and hormonal levels such as leptin, which lead 
to changes in glucose metabolism and control of appetite (9–14). 
These physiological responses are enhanced with increasing 
severity of hypoxia, such as altitude exposure. There is evidence 
that people living at high altitude are less likely to be overweight 
and/or obese, the findings which hold after adjustment for many 
plausible confounding factors that might also affect the associa-
tion (48, 49). Protective effects of hypoxia/altitude have also been 
reported in regards to development of diabetes (50) and coronary 
heart disease, as well as stroke (51–53), meaning that hypoxia 
reduced the incidence of these diseases (Table 1). Furthermore, 
interventional trials have been conducted to test the effects 
of hypoxia as a treatment for weight loss and improvement of 
metabolic functions (Table 1). These studies demonstrated that 
7 h of moderate hypoxia under resting conditions did not change 
postprandial glucose responses or substrate oxidation in young 
healthy men (54). However, when hypoxic exposure was com-
bined with low intensity physical activity, Netzer and colleagues 
reported greater weight loss in obese subjects when compared to 
combined exercise and sham hypoxia intervention (55), although 
this finding could not be reproduced in their recent study (56). 
Beneficial effects of hypoxia regarding body weight control have 
also been reported in obese young adults (57). Furthermore, Haufe 
et al. comprehensively investigated numerous cardiovascular risk 
factors in response to hypoxic training and showed favorable 
influences on body fat content, triglycerides, fasting insulin, and 
insulin sensitivity, as compared to exercise training only interven-
tion (58). These findings were confirmed in their later study in 
overweight and obese men with lower exercise workload, which 
reduces exercise burden for overweight subjects and is, thus, ben-
eficial in terms of exercise compliance (59). Appetite regulation is 
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TABLe 1 | Summary of studies investigating the effects of hypoxia on cardiovascular and metabolic health in humans.

Reference Type of the study Outcome(s)

Voss et al. (48) Epidemiological Lower rates of new obesity diagnoses among overweight persons at high altitude

Voss et al. (49) Epidemiological Obesity prevalence inversely associated with elevation and urbanization

Woolcott et al. (50) Epidemiological Inverse association between diabetes and altitude

Ezzati et al. (51) Epidemiological Living at higher altitude had a protective effect on ischemic heart disease and a harmful effect on 
chronic obstructive pulmonary disease. No net effect on life expectancy or associations with stroke 
and cancer after adjustments for confounders

Faeh et al. (52) Epidemiological Linearly decreased ischemic heart disease mortality with increasing altitude

Faeh et al. (53) Epidemiological Lower mortality from coronary heart disease and stroke at higher altitudes

Morishima and Goto (54) Acute 7 h experimental trial at rest No effect of hypoxia on postprandial glucose responses or substrate oxidation in young healthy men

Netzer et al. (55) Exercise training in normobaric 
hypoxia

Significantly greater weight loss in obese persons in real hypoxia than in sham hypoxia

Gatterer et al. (56) A randomized, single blind, 
placebo-controlled study

No larger reductions in body weight due to moderate intensity exercise and rest in hypoxia compared 
to normoxia alone in obese subjects

Kong et al. (57) Experimental trial Normobaric hypoxia training caused more weight loss than normoxia training in obese young adults

Haufe et al. (58) Single blind exercise training 
under hypoxia or normoxia

Endurance training in hypoxia resulted in a similar or even better response in terms of cardiovascular 
and metabolic risk factors than endurance exercise in normoxia

Wiesner et al. (59) Single blind exercise training 
under hypoxia or normoxia

Training in hypoxia elicited a similar or even better response in terms of physical fitness, metabolic risk 
markers, and body composition at a lower workload in obese subjects

Debevec et al. (60) Hypoxic confinement at simulated 
altitude with and without daily 
moderate intensity exercise

Body mass decreased in both groups, but whole body fat mass was only reduced in the exercise 
group. No change in hormonal appetite regulation, but improved lipid profile due to combined training 
and hypoxia exposure

Bailey et al. (61) 4-day experimental trial An additive cardioprotective effect of normobaric hypoxia training over training in normoxia

Wee and Climstein (62) A review of 25 hypoxic training trials Hypoxic training may be beneficial as an adjunct treatment to modify some cardiometabolic risk factors
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not necessarily always affected, although lipid profile is improved 
(60). Altogether, it is concluded that training in hypoxia appears 
to have numerous additive and favorable effects on traditional 
cardiovascular risk factors, which may have important clinical 
implications (61, 62).

Despite plausible physiological mechanisms and some 
encouraging results that hypoxia might indeed work as a poten-
tial therapeutic tool to tackle obesity, it may also have detrimental 
influences that need some consideration. First, hypoxia might not 
be well-tolerated by all subjects, as high-altitude illness is expe-
rienced in approximately 10 to 25% of unacclimatized persons 
above 2500  m, and the prevalence and severity of symptoms 
increases with increments in altitude (63). Second, hypoxia is 
associated with impaired cognitive performance, which may 
persist even after the cessation of hypoxic exposure (64). Third, 
hypoxic exposure is known to impair human immune system 
function (65), which may be detrimental in fighting against 
pathogens and other triggers of communicable diseases. Fourth, 
hypoxia is capable of inducing fibrosis in cardiac muscle (66), 
which increases the stiffness of the heart. Many obese individuals 
already have cardiac stiffness (67, 68), which may be exagger-
ated by hypoxic exposure. Finally, as mentioned in the previous 
section, hypoxia triggers an inflammatory response in adipose 
tissue of obese subjects, which may be further exacerbated by 
hypoxia creating a vicious-cycle. Thus, hypoxia not only alters 
human energy metabolism, which may lead to weight loss if not 
compensated for by increased energy intake, but is also capable 
of inducing several physiologically detrimental effects on bodily 
functions. It is likely that the balance of all these determine the 
overall outcome and health effects of hypoxia in humans.

Finally, as hypoxia is indeed a common feature of adipose tissue 
in particular, and potentially other tissues in obese subjects, it has 
been suggested that hyperoxia might be an option to overcome 
the hypoxic state. However, as oxygen is known to be toxic in high 
concentrations, this treatment may not be healthy in terms of cir-
culatory and metabolic function. Hyperoxia is known to decrease 
adipose cell viability, increase both intra- and extracellular oxida-
tive stress, provoke inflammation, and decrease glucose uptake of 
adipocytes (69). Hence, based on this information on hyperoxia 
and reviewed knowledge regarding hypoxia, it is concluded that 
there is a delicate balance of healthy oxygen supply and demand 
in adipose tissue that determines its overall function. While mild 
hypoxia over a sufficient duration of exposure may provide some 
additional benefits, the most feasible approach to address obesity 
and individual weight loss appears to reside in more traditional 
methods proven to be efficient in reducing adipose tissue size: 
physical activity and diet rich in fruits and vegetables, but low in 
caloric energy (Figure 1).
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