14 research outputs found

    IlsA, A Unique Surface Protein of Bacillus cereus Required for Iron Acquisition from Heme, Hemoglobin and Ferritin

    Get PDF
    The human opportunistic pathogen Bacillus cereus belongs to the B. cereus group that includes bacteria with a broad host spectrum. The ability of these bacteria to colonize diverse hosts is reliant on the presence of adaptation factors. Previously, an IVET strategy led to the identification of a novel B. cereus protein (IlsA, Iron-regulated leucine rich surface protein), which is specifically expressed in the insect host or under iron restrictive conditions in vitro. Here, we show that IlsA is localized on the surface of B. cereus and hence has the potential to interact with host proteins. We report that B. cereus uses hemoglobin, heme and ferritin, but not transferrin and lactoferrin. In addition, affinity tests revealed that IlsA interacts with both hemoglobin and ferritin. Furthermore, IlsA directly binds heme probably through the NEAT domain. Inactivation of ilsA drastically decreases the ability of B. cereus to grow in the presence of hemoglobin, heme and ferritin, indicating that IlsA is essential for iron acquisition from these iron sources. In addition, the ilsA mutant displays a reduction in growth and virulence in an insect model. Hence, our results indicate that IlsA is a key factor within a new iron acquisition system, playing an important role in the general virulence strategy adapted by B. cereus to colonize susceptible hosts

    Conductivity of ultrathin Pb films during growth on Si(111) at low temperatures

    No full text
    The electronic properties of thin metallic films strongly depend on their structure. For the preparation of ultrathin films (0.8 to 12 ML) Pb was grown on a Si (111)-7Ă—77\times 7 structure at temperatures below 25 K. Percolation as measured by DC conductance starts at 0.7 ML. Up to 4 ML the growing film is disordered. During continuation of the growth the film recrystallizes epitaxially and layer-by-layer growth connected with oscillations of conductivity and LEED intensities is observed even at 25 K. The defect structure as determined by SPA-LEED and the quantum size effect allow a quantitative description of the conductivity oscillations. The experiments show, that the electronic properties of ultrathin Pb films are clearly correlated with the structural properties of the film

    Strains of Faecalibacterium prausnitzii and its extracts reduce blood glucose levels, percent HbA1c, and improve glucose tolerance without causing hypoglycemic side effects in diabetic and prediabetic mice

    No full text
    Introduction The commensal bacterium Faecalibacterium prausnitzii is a prominent member of the microbiome of animals and humans, and it plays an important role in several physiological processes. Numerous studies have correlated the reduction of F. prausnitzii abundance with many disease states, including irritable bowel syndrome, Crohn’s disease, obesity, asthma, major depressive disorder, and metabolic diseases in humans. Studies have also correlated F. prausnitzii with diseases in humans involved in altered glucose metabolism, including diabetes.Research design and methods The aim of this study was to investigate the effects of compositions derived from three strains of F. prausnitzii (coined FPZ) on glucose metabolism in diet-induced obese male C57BL/6J prediabetic and type 2 diabetic mice. The primary endpoints of these studies were measuring changes in fasting blood glucose, glucose tolerance (as measured by a glucose tolerance test), and percent hemoglobin A1c (HbA1c) with longer term treatment. Two placebo-controlled trials were carried out using both live cell FPZ and killed cell FPZ and extracts. Two additional placebo-controlled trials were carried out in non-diabetic mice and mice that previously had type 2 diabetes (T2D).Results Both trials in prediabetic and diabetic mice revealed that peroral administration of live FPZ or extracts from FPZ lowered fasting blood glucose levels and improved glucose tolerance compared with control mice. A trial administering longer FPZ treatment also resulted in lowered percent HbA1c compared with control mice. Additionally, trials in non-diabetic mice treated with FPZ demonstrated that FPZ treatment does not lead to hypoglycemia.Conclusions The trial results have shown that treatment with different formulations of FPZ result in lower blood glucose levels, lower percent HbA1c, and improved glucose response in mice compared with control prediabetic/diabetic mice. FPZ is a promising candidate as an orally administered probiotic or postbiotic to manage and improve pre-diabetes and T2D
    corecore