313 research outputs found

    Π€Ρ–Π·ΠΈΠΊΠΎ-Ρ…Ρ–ΠΌΡ–Ρ‡Π½Ρ– Ρ‚Π° ΠΎΡ€Π³Π°Π½ΠΎΠ»Π΅ΠΏΡ‚ΠΈΡ‡Π½Ρ– ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΠΈ рослинного ΠΌΠΎΠ»ΠΎΠΊΠ°, якС Π²ΠΈΠΊΠΎΡ€ΠΈΡΡ‚ΠΎΠ²ΡƒΡŽΡ‚ΡŒ Ρƒ Π³ΠΎΡ‚Π΅Π»ΡŒΠ½ΠΎ-рСсторанних комплСксах

    Get PDF
    The article highlights the current state of the production of dairy and vegetable food products. The results of studies of organoleptic and physical, chemical indicators of the quality of various herbal drinks: coconut, almond and oat, are presented, as well as an analysis and comparison with cow's milk, which is used in hotel and restaurant complexes in Bela Tserkva. For assessing the quality according to the organoleptic characteristics of the beverages, the following were examined: appearance, color, smell, taste and consistency. It was found that according to these indicators, herbal drinks comply with the regulatory documentation for these products. When assessing the quality by physical and chemical indicators, the mass fraction of fat, dry matter, titratable and active acidity, and density were established. The titratable acidity of milk-like drinks was within the normal range and did not exceed 10 ⁰T. The mass fraction of fat in coconut milk was 1.2 %, almond-rice milk – 1.3 % and oat milk – 2.4 %. Mass fraction of coconut milk solids was 7.6%, almond-rice 10.5% and oat milk 11.4%. The density of all types of herbal drinks was in the range of 1005–1015 kg/m3. The indicators of the quality of cow's milk, which is used in hotel and restaurant complexes, have been investigated in a comparative form. In terms of organoleptic indicators, the quality of cow's milk corresponds to the normative documentation. The fat mass fraction of cow's milk was 2.5 %, the mass fraction of solids was 12.5%, the titratable acidity was at the level of 18 ⁰T, the active acidity pH was 6.6, and the density was 1028 kg/m3. Analysis of various types of vegetable and cow's milk, which are used in hotel and restaurant complexes in the city of Bela Tserkva, in terms of physicochemical and organoleptic quality indicators, allows us to consider herbal drinks as substitutes for traditional products capable of providing the human body with essential nutritional factors.Π£ статті висвітлСно сучасний стан Π²ΠΈΡ€ΠΎΠ±Π½ΠΈΡ†Ρ‚Π²Π° ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎ-рослинних Ρ…Π°Ρ€Ρ‡ΠΎΠ²ΠΈΡ… ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Ρ–Π². НавСдСно Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ ΠΎΡ€Π³Π°Π½ΠΎΠ»Π΅ΠΏΡ‚ΠΈΡ‡Π½ΠΈΡ… Ρ‚Π° Ρ„Ρ–Π·ΠΈΠΊΠΎ-Ρ…Ρ–ΠΌΡ–Ρ‡Π½ΠΈΡ… ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΡ–Π² якості Ρ€Ρ–Π·Π½ΠΈΡ… рослинних Π½Π°ΠΏΠΎΡ—Π²: кокосового, мигдального Ρ‚Π° вівсяного, Π° Ρ‚Π°ΠΊΠΎΠΆ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ Π°Π½Π°Π»Ρ–Π· Ρ‚Π° порівняння Π· коров’ячим ΠΌΠΎΠ»ΠΎΠΊΠΎΠΌ, якС Π²ΠΈΠΊΠΎΡ€ΠΈΡΡ‚ΠΎΠ²ΡƒΡŽΡ‚ΡŒ Ρƒ Π³ΠΎΡ‚Π΅Π»ΡŒΠ½ΠΎ-рСсторанних комплСксах ΠΌ. Π‘Ρ–Π»Π° Π¦Π΅Ρ€ΠΊΠ²Π°. Π—Π° провСдСння ΠΎΡ†Ρ–Π½ΠΊΠΈ якості Π·Π° ΠΎΡ€Π³Π°Π½ΠΎΠ»Π΅ΠΏΡ‚ΠΈΡ‡Π½ΠΈΠΌΠΈ ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΠ°ΠΌΠΈ Π½Π°ΠΏΠΎΡ—Π² дослідТували: Π·ΠΎΠ²Π½Ρ–ΡˆΠ½Ρ–ΠΉ вигляд, ΠΊΠΎΠ»Ρ–Ρ€, Π·Π°ΠΏΠ°Ρ…, смак Ρ‚Π° ΠΊΠΎΠ½ΡΠΈΡΡ‚Π΅Π½Ρ†Ρ–ΡŽ. ВстановлСно, Ρ‰ΠΎ Π·Π° Ρ†ΠΈΠΌΠΈ ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΠ°ΠΌΠΈ рослинні Π½Π°ΠΏΠΎΡ— Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π°ΡŽΡ‚ΡŒ Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½Ρ–ΠΉ Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Π°Ρ†Ρ–Ρ— Π½Π° Π΄Π°Π½Ρ– ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΈ. ΠŸΡ–Π΄ час провСдСння ΠΎΡ†Ρ–Π½ΠΊΠΈ якості Π·Π° Ρ„Ρ–Π·ΠΈΠΊΠΎ-Ρ…Ρ–ΠΌΡ–Ρ‡Π½ΠΈΠΌΠΈ ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΠ°ΠΌΠΈ Π²ΡΡ‚Π°Π½ΠΎΠ²Π»ΡŽΠ²Π°Π»ΠΈ масову частку ΠΆΠΈΡ€Ρƒ, сухих Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½, Ρ‚ΠΈΡ‚Ρ€ΠΎΠ²Π°Π½Ρƒ Ρ‚Π° Π°ΠΊΡ‚ΠΈΠ²Π½Ρƒ ΠΊΠΈΡΠ»ΠΎΡ‚Π½Ρ–ΡΡ‚ΡŒ, густину. Π’ΠΈΡ‚Ρ€ΠΎΠ²Π°Π½Π° ΠΊΠΈΡΠ»ΠΎΡ‚Π½Ρ–ΡΡ‚ΡŒ ΠΌΠΎΠ»ΠΎΠΊΠΎΠΏΠΎΠ΄Ρ–Π±Π½ΠΈΡ… Π½Π°ΠΏΠΎΡ—Π² Π±ΡƒΠ»Π° Π² ΠΌΠ΅ΠΆΠ°Ρ… Π½ΠΎΡ€ΠΌΠΈ Ρ– Π½Π΅ ΠΏΠ΅Ρ€Π΅Π²ΠΈΡ‰ΡƒΡ” 10 ⁰В. Масова частка ΠΆΠΈΡ€Ρƒ кокосового ΠΌΠΎΠ»ΠΎΠΊΠ° становила 1,2 %, мигдально-рисового – 1,3 % Ρ‚Π° вівсяного – 2,4 %. Масова частка сухих Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½ кокосового ΠΌΠΎΠ»ΠΎΠΊΠ° становила – 7,6 %, мигдально-рисового 10,5 % Ρ‚Π° вівсяного – 11,4 %. Густина всіх Π²ΠΈΠ΄Ρ–Π² рослинних Π½Π°ΠΏΠΎΡ—Π² Π±ΡƒΠ»Π° Π² ΠΌΠ΅ΠΆΠ°Ρ… 1005–1015 ΠΊΠ³/ΠΌ3. Π£ ΠΏΠΎΡ€Ρ–Π²Π½ΡΠ»ΡŒΠ½Ρ–ΠΉ Ρ„ΠΎΡ€ΠΌΡ– дослідТСно ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΠΈ якості ΠΌΠΎΠ»ΠΎΠΊΠ° коров’ячого, якС Π²ΠΈΠΊΠΎΡ€ΠΈΡΡ‚ΠΎΠ²ΡƒΡŽΡ‚ΡŒ Ρƒ Π³ΠΎΡ‚Π΅Π»ΡŒΠ½ΠΎ-рСсторанних комплСксах. Π—Π° ΠΎΡ€Π³Π°Π½ΠΎΠ»Π΅ΠΏΡ‚ΠΈΡ‡Π½ΠΈΠΌΠΈ ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΠ°ΠΌΠΈ ΡΠΊΡ–ΡΡ‚ΡŒ ΠΌΠΎΠ»ΠΎΠΊΠ° коров’ячого Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π°Ρ” Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½Ρ–ΠΉ Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Π°Ρ†Ρ–Ρ—. Масова частка ΠΆΠΈΡ€Ρƒ ΠΌΠΎΠ»ΠΎΠΊΠ° коров’ячого становила 2,5 %, масова частка сухих Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½ 12,5 %, Ρ‚ΠΈΡ‚Ρ€ΠΎΠ²Π°Π½Π° ΠΊΠΈΡΠ»ΠΎΡ‚Π½Ρ–ΡΡ‚ΡŒ Π±ΡƒΠ»Π° Π½Π° Ρ€Ρ–Π²Π½Ρ– 18 ⁰В, Π°ΠΊΡ‚ΠΈΠ²Π½Π° ΠΊΠΈΡΠ»ΠΎΡ‚Π½Ρ–ΡΡ‚ΡŒ рН – 6,6, густина – 1028 ΠΊΠ³/ΠΌ3. Аналіз Ρ€Ρ–Π·Π½ΠΈΡ… Π²ΠΈΠ΄Ρ–Π² рослинного Ρ– коров’ячого ΠΌΠΎΠ»ΠΎΠΊΠ°, які Π²ΠΈΠΊΠΎΡ€ΠΈΡΡ‚ΠΎΠ²ΡƒΡŽΡ‚ΡŒ Ρƒ Π³ΠΎΡ‚Π΅Π»ΡŒΠ½ΠΎ-рСсторанних комплСксах ΠΌ. Π‘Ρ–Π»Π° Π¦Π΅Ρ€ΠΊΠ²Π° Π·Π° Ρ„Ρ–Π·ΠΈΠΊΠΎ-Ρ…Ρ–ΠΌΡ–Ρ‡Π½ΠΈΠΌΠΈ Ρ‚Π° ΠΎΡ€Π³Π°Π½ΠΎΠ»Π΅ΠΏΡ‚ΠΈΡ‡Π½ΠΈΠΌΠΈ ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΠ°ΠΌΠΈ якості дозволяє розглядати рослинні Π½Π°ΠΏΠΎΡ— як Π·Π°ΠΌΡ–Π½Π½ΠΈΠΊΠΈ Ρ‚Ρ€Π°Π΄ΠΈΡ†Ρ–ΠΉΠ½ΠΈΡ… ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Ρ–Π² Π·Π΄Π°Ρ‚Π½ΠΈΡ… Π·Π°Π±Π΅Π·ΠΏΠ΅Ρ‡ΡƒΠ²Π°Ρ‚ΠΈ ΠΎΡ€Π³Π°Π½Ρ–Π·ΠΌ людини Π΅ΡΠ΅Π½Ρ†Ρ–Π°Π»ΡŒΠ½ΠΈΠΌΠΈ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ ТивлСння

    Modeling the Antitubulin Activity of Benzimidazol-2-yl Carbamates: Mini-review

    Full text link
    The biological activity of 5-benzimidazol-2-yl carbamate derivatives is associated with their ability to form a complex with /3-tubulin and, consequently, disrupt the process of assembly of microtubules of the cytoskeleton of cells. Over the past 10 years, the understanding of the binding of 5-benzimidazol-2-yl carbamate derivatives to the /3-tubulin subunit has increased significantly, mainly due to the published crystal structures of their ligand-receptor complexes. However, some details of this process could be predicted based on the results of molecular modeling before the publication of the corresponding crystal data. This mini-review summarizes the results of such works. Β© 2021 Author(s).This research was supported by the Russian Foundation for Basic Research (grant No. 18-316-20018)

    Π‘Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½Π° Ρ†Ρ–Π½Π½Ρ–ΡΡ‚ΡŒ Π±Ρ–Π»ΠΊΡ–Π² пастСризованого ΠΌΠΎΠ»ΠΎΠΊΠ° ΠΊΡ–Π· Π·Π°Π°Π½Π΅Π½ΡΡŒΠΊΠΎΡ— ΠΏΠΎΡ€ΠΎΠ΄ΠΈ

    Get PDF
    Goat's milk is positioned as biologically complete, suitable for the creation of functional products and baby food products. This is explained by the qualitative and quantitative composition of its main nutrients: proteins, lipids, carbohydrates, biologically active substances, micro- and macro-elements. The biological value of food raw materials is assessed by its ability to satisfy protein needs. Strict thermal treatment regimens are used for goat milk. This is caused by the quantitative ratio of casein and albumin fractions in goat milk and its specific organoleptic properties. Pasteurization of milk causes partial destruction of proteins, enzymes, hormones and evaporation of gaseous. This contributes to the improvement of sensory properties of dairy goat raw materials. The effect of high temperatures on goat milk proteins and its biological value has been little studied. The effect of pasteurization regimes on proteins was studied and indicators of the biological value of the samples were determined: without heat treatment; heat treatment 63 Β± 2 Β°Π‘, duration 30 minutes; heat treatment 87 Β± 2 Β°Π‘ duration 5-6 minutes. The amino acid composition of the test samples was determined by acid hydrolysis on an LC2000 amino acid analyzer (Biotronik, Germany). Indicators of the biological value of proteins of pasteurized goat milk were calculated – coefficient of difference of amino acid composition, biological value, coefficient of utilitarian amino acid composition, coefficient of rationality of amino acid composition, coefficient of comparative redundancy. The general analysis of the obtained data revealed a positive effect of heat treatment on the indicators of the biological value of goat milk. The amino acid score of the limiting amino acid increased by 14.82–14.92 %; biological value – 11.4–13.02 %; the PDCAAS indicator – by 14.18–14.29 %; changes in the values of formalized indicators had the same tendency. The biological value of proteins for the application of thermal regimes is at the same level. It has been proven that pasteurization has a positive effect on the biological value of goat milk proteins. This makes the product safe and useful for all segments of the population and can be recommended for feeding children from 0 to 6 months. Prospects for further research are the development of milk drinks of a combined composition of raw materials with an improved recipe in order to enrich the product with limiting amino acids.КозинС ΠΌΠΎΠ»ΠΎΠΊΠΎ ΠΏΠΎΠ·ΠΈΡ†Ρ–ΠΎΠ½ΡƒΡ”Ρ‚ΡŒΡΡ як Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎ ΠΏΠΎΠ²Π½ΠΎΡ†Ρ–Π½Π½Π΅, ΠΏΡ€ΠΈΠ΄Π°Ρ‚Π½Π΅ для створСння ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Ρ–Π² Ρ„ΡƒΠ½ΠΊΡ†Ρ–ΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ призначСння Ρ‚Π° ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Ρ–Π² дитячого харчування, Ρ‰ΠΎ ΠΎΠ±ΡƒΠΌΠΎΠ²Π»Π΅Π½ΠΎ якісним Ρ– ΠΊΡ–Π»ΡŒΠΊΡ–ΡΠ½ΠΈΠΌ складом основних ΠΉΠΎΠ³ΠΎ Π½ΡƒΡ‚Ρ€Ρ–Ρ”Π½Ρ‚Ρ–Π²: ΠΏΡ€ΠΎΡ‚Π΅Ρ—Π½Ρ–Π², Π»Ρ–ΠΏΡ–Π΄Ρ–Π², Π²ΡƒΠ³Π»Π΅Π²ΠΎΠ΄Ρ–Π², Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΈΡ… Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½, ΠΌΡ–ΠΊΡ€ΠΎ- Ρ‚Π° ΠΌΠ°ΠΊΡ€ΠΎΠ΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ–Π². Π‘Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½Ρƒ Ρ†Ρ–Π½Π½Ρ–ΡΡ‚ΡŒ Ρ…Π°Ρ€Ρ‡ΠΎΠ²ΠΎΡ— сировини ΠΎΡ†Ρ–Π½ΡŽΡŽΡ‚ΡŒ самС Π·Π° Ρ—Ρ— Π·Π΄Π°Ρ‚Π½Ρ–ΡΡ‚ΡŽ Π·Π°Π΄ΠΎΠ²ΠΎΠ»ΡŒΠ½ΡΡ‚ΠΈ Π±Ρ–Π»ΠΊΠΎΠ²Ρ– ΠΏΠΎΡ‚Ρ€Π΅Π±ΠΈ. Для ΠΊΠΎΠ·ΠΈΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠ»ΠΎΠΊΠ° Π·Π°ΡΡ‚ΠΎΡΠΎΠ²ΡƒΡŽΡ‚ΡŒΡΡ Π±Ρ–Π»ΡŒΡˆ Торсткі Ρ€Π΅ΠΆΠΈΠΌΠΈ Ρ‚Π΅Ρ€ΠΌΡ–Ρ‡Π½ΠΎΠ³ΠΎ оброблСння, Ρ‰ΠΎ ΠΎΠ±ΡƒΠΌΠΎΠ²Π»Π΅Π½ΠΎ ΡΠΏΡ–Π²Π²Ρ–Π΄Π½ΠΎΡˆΠ΅Π½Π½ΡΠΌ Ρ„Ρ€Π°ΠΊΡ†Ρ–ΠΉ ΠΊΠ°Π·Π΅Ρ—Π½Ρƒ Ρ– Π°Π»ΡŒΠ±ΡƒΠΌΡ–Π½Ρ–Π² Ρ‚Π° спСцифічними ΠΎΡ€Π³Π°Π½ΠΎΠ»Π΅ΠΏΡ‚ΠΈΡ‡Π½ΠΈΠΌΠΈ особливостями сировини. Π—Π° пастСризації ΠΌΠΎΠ»ΠΎΠΊΠ° Π²Ρ–Π΄Π±ΡƒΠ²Π°Ρ”Ρ‚ΡŒΡΡ частковС руйнування Π±Ρ–Π»ΠΊΡ–Π², Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Ρ–Π², Π³ΠΎΡ€ΠΌΠΎΠ½Ρ–Π² Ρ– випаровування Π³Π°Π·Ρ–Π². ΠŸΠ°ΡΡ‚Π΅Ρ€ΠΈΠ·Π°Ρ†Ρ–Ρ сировини сприяє ΡƒΠ΄ΠΎΡΠΊΠΎΠ½Π°Π»Π΅Π½Π½ΡŽ Ρ—Ρ— сСнсорних властивостСй. Мало дослідТСний Π²ΠΏΠ»ΠΈΠ² Π΄Ρ–Ρ— високих Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ Π½Π° Π±Ρ–Π»ΠΊΠΈ ΠΊΠΎΠ·ΠΈΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠ»ΠΎΠΊΠ° Ρ‚Π° Ρ—Ρ…Π½ΡŽ Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½Ρƒ Ρ†Ρ–Π½Π½Ρ–ΡΡ‚ΡŒ. ДослідТували Π²ΠΏΠ»ΠΈΠ² Ρ€Π΅ΠΆΠΈΠΌΡ–Π² пастСризації Π½Π° Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½Ρƒ Ρ†Ρ–Π½Π½Ρ–ΡΡ‚ΡŒ Π±Ρ–Π»ΠΊΡ–Π² ΠΊΠΎΠ·ΠΈΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠ»ΠΎΠΊΠ°: Π±Π΅Π· Ρ‚Π΅Ρ€ΠΌΡ–Ρ‡Π½ΠΎΠ³ΠΎ оброблСння; Ρ‚Π΅Ρ€ΠΌΡ–Ρ‡Π½Π΅ оброблСння 63 Β± 2 Β°Π‘, Ρ‚Ρ€ΠΈΠ²Π°Π»Ρ–ΡΡ‚ΡŒ 30 Ρ…Π²ΠΈΠ»ΠΈΠ½; Ρ‚Π΅Ρ€ΠΌΡ–Ρ‡Π½Π΅ оброблСння 87 Β± 2 Β°Π‘ Ρ‚Ρ€ΠΈΠ²Π°Π»Ρ–ΡΡ‚ΡŽ 5–6 Ρ…Π²ΠΈΠ»ΠΈΠ½. Амінокислотний склад дослідних Π·Ρ€Π°Π·ΠΊΡ–Π² Π²ΠΈΠ·Π½Π°Ρ‡Π°Π»ΠΈ Π·Π° допомогою кислотного Π³Ρ–Π΄Ρ€ΠΎΠ»Ρ–Π·Ρƒ Π½Π° амінокислотному Π°Π½Π°Π»Ρ–Π·Π°Ρ‚ΠΎΡ€Ρ– LC2000 (Biotronik, НімСччина). Π ΠΎΠ·Ρ€Π°Ρ…ΠΎΠ²Π°Π½Ρ– ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΠΈ Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΡ— цінності Π±Ρ–Π»ΠΊΡ–Π² пастСризованого ΠΊΠΎΠ·ΠΈΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠ»ΠΎΠΊΠ° – ΠΊΠΎΠ΅Ρ„Ρ–Ρ†Ρ–Ρ”Π½Ρ‚ Ρ€Ρ–Π·Π½ΠΈΡ†Ρ– амінокислотного складу, Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½Ρƒ Ρ†Ρ–Π½Π½Ρ–ΡΡ‚ΡŒ, ΠΊΠΎΠ΅Ρ„Ρ–Ρ†Ρ–Ρ”Π½Ρ‚ утилітарності амінокислотного складу, ΠΊΠΎΠ΅Ρ„Ρ–Ρ†Ρ–Ρ”Π½Ρ‚ Ρ€Π°Ρ†Ρ–ΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚Ρ– амінокислотного складу, ΠΊΠΎΠ΅Ρ„Ρ–Ρ†Ρ–Ρ”Π½Ρ‚ ΠΏΠΎΡ€Ρ–Π²Π½ΡŽΠ²Π°Π»ΡŒΠ½ΠΎΡ— Π½Π°Π΄Π»ΠΈΡˆΠΊΠΎΠ²ΠΎΡΡ‚Ρ–. Π—Π°Π³Π°Π»ΡŒΠ½ΠΈΠΉ Π°Π½Π°Π»Ρ–Π· ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΈΡ… Π΄Π°Π½ΠΈΡ… виявив ΠΏΠΎΠ·ΠΈΡ‚ΠΈΠ²Π½ΠΈΠΉ Π²ΠΏΠ»ΠΈΠ² Ρ‚Π΅Ρ€ΠΌΡ–Ρ‡Π½ΠΎΠ³ΠΎ оброблСння Π½Π° ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΠΈ Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΡ— цінності ΠΊΠΎΠ·ΠΈΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠ»ΠΎΠΊΠ°: скор Π»Ρ–ΠΌΡ–Ρ‚ΡƒΡŽΡ‡ΠΎΡ— амінокислоти зріс Π½Π° 14,82–14,92 %; Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½Π° Ρ†Ρ–Π½Π½Ρ–ΡΡ‚ΡŒ – 11,4–13,02 %; ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊ PDCAAS – Π½Π° 14,18–14,29 %; Π·ΠΌΡ–Π½ΠΈ Π·Π½Π°Ρ‡Π΅Π½ΡŒ Ρ„ΠΎΡ€ΠΌΠ°Π»Ρ–Π·ΠΎΠ²Π°Π½ΠΈΡ… ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΡ–Π² ΠΌΠ°Π»ΠΈ Ρ‚Π°ΠΊΡƒ ΠΆ Ρ‚Π΅Π½Π΄Π΅Π½Ρ†Ρ–ΡŽ. Π‘Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½Π° Ρ†Ρ–Π½Π½Ρ–ΡΡ‚ΡŒ Π±Ρ–Π»ΠΊΡ–Π² Π·Π° застосування Ρ‚Π΅Ρ€ΠΌΡ–Ρ‡Π½ΠΈΡ… Ρ€Π΅ΠΆΠΈΠΌΡ–Π² ΠΏΠ΅Ρ€Π΅Π±ΡƒΠ²Π°Ρ” Π½Π° ΠΎΠ΄Π½ΠΎΠΌΡƒ Ρ€Ρ–Π²Π½Ρ–. Π”ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ, Ρ‰ΠΎ пастСризація ΠΌΠ°Ρ” ΠΏΠΎΠ·ΠΈΡ‚ΠΈΠ²Π½ΠΈΠΉ Π²ΠΏΠ»ΠΈΠ² Π½Π° Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½Ρƒ Ρ†Ρ–Π½Π½Ρ–ΡΡ‚ΡŒ Π±Ρ–Π»ΠΊΡ–Π² ΠΊΠΎΠ·ΠΈΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠ»ΠΎΠΊΠ°, Ρ‰ΠΎ Ρ€ΠΎΠ±ΠΈΡ‚ΡŒ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ Π±Π΅Π·ΠΏΠ΅Ρ‡Π½ΠΈΠΌ Ρ– корисним для усіх вСрств насСлСння Ρ‚Π° ΠΌΠΎΠΆΠ΅ Π±ΡƒΡ‚ΠΈ Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°Π½ΠΈΠΌ для харчування Π΄Ρ–Ρ‚Π΅ΠΉ Π²Ρ–Π΄ 0 Π΄ΠΎ 6 міс. ΠŸΠ΅Ρ€ΡΠΏΠ΅ΠΊΡ‚ΠΈΠ²ΠΈ ΠΏΠΎΠ΄Π°Π»ΡŒΡˆΠΈΡ… Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ Ρ” розроблСння ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΈΡ… Π½Π°ΠΏΠΎΡ—Π² ΠΊΠΎΠΌΠ±Ρ–Π½ΠΎΠ²Π°Π½ΠΎΠ³ΠΎ складу сировини Π· ΡƒΠ΄ΠΎΡΠΊΠΎΠ½Π°Π»Π΅Π½ΠΎΡŽ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΡƒΡ€ΠΎΡŽ Π· ΠΌΠ΅Ρ‚ΠΎΡŽ збагачСння ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Ρƒ Π»Ρ–ΠΌΡ–Ρ‚ΡƒΡŽΡ‡ΠΈΠΌΠΈ амінокислотами

    History of development of neurosurgery in Scientific Center of Reconstructive and Restorative Surgery SB RAMS - combination of science and practice

    Get PDF
    The article is devoted to the description of all main milestones of development of neurosurgical ward from the foundation of Scientific Research nstitute of Traumatology and Orthopaedics in Δ°946 to nowadays. The problems of development of the ward, scientific and practical paradigm of scientific-clinical department of neurosurgery of Scientific Center of Reconstructive and Restorative Surgery SB RAMS are reviewed in the article. The periods of activity of Scientific Research Institute of Traumatology and Orthopaedics from the positions of clinical and scientific achievements are observed. The article presents the facts on the work of clinical and scientific officers that prove close connection of scientific researches and clinical developments in different spheres of neurosurgery. The stages of formation of professional growth of Scientific Research Institute of Traumatology and Orthopaedics in close relation with periods of the development of the country. Also the article presents main dissertation researches performed by the employees of Scientific Research Institute of Traumatology and Orthopaedics, shows their significance in science and clinical work and also illustrates main problems of development of neurosurgery nowadays and determines ways of their solving

    MODELING THE ANTITUBULIN ACTIVITY OF BENZIMIDAZOL-2-YL CARBAMATES: MINIREVIEW

    Full text link
    Computer modeling has become the commonly used method to explain biological activity of substances [1]. Despite the technical attractiveness of this approach, there are serious difficulties in creating a theoretical model that would correspond to the experimental data [2]. The purpose of this mini-review is to systematize scientific efforts to predict the binding site of benzimidazol-2-yl carbamate derivatives with Ξ²-tubulin. Interest in the generalization of these studies is due to the fact that while the crystal structure of the complex tubulin with methyl [5-(2-thienylcarbonyl)-1H-benzimidazol-2-yl] carbamate 1 was published only in 2015 (PDB id 5CA1, Figure 1), some details of the interaction of benzimidazol-2-yl carbamates with Ξ²-tubulin could be predicted before it. This mini-review summarizes the results of such works.This research was supported by the Russian Foundation for Basic Research (grant No. 18-316-20018)

    Resistance to viruses of potato: current status and prospects

    Get PDF
    The potato (Solanum tuberosum), one of the most important food crops in the world, is infected by various viruses, nine of which have great economic significance, causing substantial losses in the yield and quality of the crop. To minimize consequences of virus infections, in developed countries specific phytosanitary measures have been established and are being improved to monitor the spread of viruses and certify seed potato material using virus diagnostics and production of virus-free potato cultivars. However, in the longer-term, the development and deployment of potato cultivars resistant to viruses would be a priority. Some new potato cultivars and lines resistant to many viruses have already been generated using either traditional breeding methods or genetic engineering. For this purpose, natural resistance genes, primarily from wild Solanum species, or virus derived nucleotide sequences have been used as sources of resistance. However, these approaches have essential limitations because the acquired resistance is highly specific (against individual viruses only), is not durable, can be overcome by viruses and, finally due to regulatory bans on genetically modified organisms. Recently developed new genome editing technologies with the potential to be a powerful tool for gene design open up broad opportunities for development of next-generation resistance genes. The most promising approaches are (1) site-directed mutagenesis of the genes conferring specific resistance to make their action much broader and (2) the use of non-specific (nonhost) resistance to generate plants resistant to unrelated viruses and, in some cases, to other pathogens and even abiotic stresses. Identification of genes involved in mechanisms of non-host resistance is just beginning. The cell nucleus is a new source of novelΒ factors involved in various signaling pathways resulting in defence response to virus infection. This review focuses on the approaches and challenges related to the development of potato plants resistant to virus infections

    Hygienic features of chemical air pollution in aluminum production

    Get PDF
    The article presents retrospective assessment of chemical factors in aluminum production over a long follow-up period. The main pollutants of the workplace air are fluorine compounds, resinous substances, and disintegration aerosol. The comparative assessment of the workplace air composition during the operation of electrolytic cells with self-baking anodes and when using a new technology with pre-baked anodes was carried out. The results of the research were processed using standard parametric methods of calculation of mean value and error in mean. It is shown that the introduction of a new technology of pre-baked anodes contributes to the optimization of working environment, reduction of harmful chemicals in the workplace air

    ДослідТСння Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½ΠΎΡ— активності данофлоксацину ΠΏΡ€ΠΎΡ‚ΠΈ Π·Π±ΡƒΠ΄Π½ΠΈΠΊΡ–Π² Π±Π°ΠΊΡ‚Π΅Ρ€Ρ–Π°Π»ΡŒΠ½ΠΈΡ… Ρ–Π½Ρ„Π΅ΠΊΡ†Ρ–ΠΉ Ρƒ ΠΊΡ–Π·

    Get PDF
    Fluoroquinolones are critical antimicrobials for both human and veterinary medicine. Due to their unique mechanism of antimicrobial action and good pharmacokinetic properties, they are often the first choice drugs in the treatment of bacterial infections in animals. The purpose of the investigation was to study the antimicrobial activity of a third-generation fluoroquinolone antibiotic of danofloxacin against bacteria, pathogens of respiratory and intestinal infection in goats. The samples of the nasal outflows (respiratory infection) and fecal masses (intestinal infection) were collected from clinically ill goats for microbiological studies. The sensitivity test of the microflora of the biomaterial, carried out by the disco-diffusion method, showed that the microorganisms of all the samples were sensitive to danofloxacin. Bacteria Streptococcus pneumonia (n = 10), Staphylococcus aureus (n = 4) and Escherichia coli (n = 2) were isolated and identified from nasal exudate samples (n = 10). Pathogenic strains of Escherichia coli were isolated from all faecal samples (n = 12). The degree of bacteriostatic activity of danofloxacin was determined by establishing its minimum inhibitory concentration (MIC) for bacterial isolates by sequential dilutions in a liquid nutrient medium. The average MIC of danofloxacin for Streptococcus pneumoniae isolates was 0.26 Β± 0.13 ΞΌg/ml and for Staphylococcus aureus isolates – 0.25 Β± 0.075 ΞΌg/ml. For Escherichia coli strains isolated from faeces of goats suffering from coli infection, the average MIC of danofloxacin was 0.38 Β± 0.12 ΞΌg/ml (range 0.2 to 0.8 ΞΌg/ml). Antimicrobial sensitivity testing have shown a high level of bacteriostatic activity of danofloxacin against bacteria, pathogens of respiratory and intestinal infections in goats. This may be the argument for the use of danofloxacin-based chemotherapeutic agents in the treatment of bacterial infections in goats, especially for the empirical approach to therapy.Π€Ρ‚ΠΎΡ€Ρ…Ρ–Π½ΠΎΠ»ΠΎΠ½ΠΈ Ρ” ΠΊΡ€ΠΈΡ‚ΠΈΡ‡Π½ΠΎ Π²Π°ΠΆΠ»ΠΈΠ²ΠΈΠΌΠΈ Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½ΠΈΠΌΠΈ Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½Π°ΠΌΠΈ як для Π³ΡƒΠΌΠ°Π½Π½ΠΎΡ—, Ρ‚Π°ΠΊ Ρ– для Π²Π΅Ρ‚Π΅Ρ€ΠΈΠ½Π°Ρ€Π½ΠΎΡ— ΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½ΠΈ. Завдяки ΡƒΠ½Ρ–ΠΊΠ°Π»ΡŒΠ½ΠΎΠΌΡƒ ΠΌΠ΅Ρ…Π°Π½Ρ–Π·ΠΌΡƒ Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½ΠΎΡ— Π΄Ρ–Ρ— Ρ‚Π° Π΄ΠΎΠ±Ρ€ΠΈΠΌ Ρ„Π°Ρ€ΠΌΠ°ΠΊΠΎΠΊΡ–Π½Π΅Ρ‚ΠΈΡ‡Π½ΠΈΠΌ властивостям, Π²ΠΎΠ½ΠΈ часто ΡΠ»ΡƒΠΆΠ°Ρ‚ΡŒ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π°ΠΌΠΈ ΠΏΠ΅Ρ€ΡˆΠΎΠ³ΠΎ Π²ΠΈΠ±ΠΎΡ€Ρƒ ΠΏΡ€ΠΈ Π»Ρ–ΠΊΡƒΠ²Π°Π½Π½Ρ– Π±Π°ΠΊΡ‚Π΅Ρ€Ρ–Π°Π»ΡŒΠ½ΠΈΡ… Ρ–Π½Ρ„Π΅ΠΊΡ†Ρ–ΠΉ Ρƒ Ρ‚Π²Π°Ρ€ΠΈΠ½. ΠœΠ΅Ρ‚ΠΎΡŽ дослідТСння Π±ΡƒΠ»ΠΎ вивчСння Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½ΠΎΡ— активності Ρ„Ρ‚ΠΎΡ€Ρ…Ρ–Π½ΠΎΠ»ΠΎΠ½ΠΎΠ²ΠΎΠ³ΠΎ Π°Π½Ρ‚ΠΈΠ±Ρ–ΠΎΡ‚ΠΈΠΊΠ° Ρ‚Ρ€Π΅Ρ‚ΡŒΠΎΠ³ΠΎ покоління данофлоксацину Ρ‰ΠΎΠ΄ΠΎ Π±Π°ΠΊΡ‚Π΅Ρ€Ρ–ΠΉ, Π·Π±ΡƒΠ΄Π½ΠΈΠΊΡ–Π² рСспіраторної Ρ‚Π° ΠΊΠΈΡˆΠΊΠΎΠ²ΠΎΡ— Ρ–Π½Ρ„Π΅ΠΊΡ†Ρ–Ρ— Ρƒ ΠΊΡ–Π·. Для ΠΌΡ–ΠΊΡ€ΠΎΠ±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΡ… Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ Π²Ρ–Π΄ ΠΊΠ»Ρ–Π½Ρ–Ρ‡Π½ΠΎ Ρ…Π²ΠΎΡ€ΠΈΡ… ΠΊΡ–Π· Π²Ρ–Π΄Π±ΠΈΡ€Π°Π»ΠΈ Π·Ρ€Π°Π·ΠΊΠΈ носових Π²ΠΈΠ΄Ρ–Π»Π΅Π½ΡŒ (рСспіраторна інфСкція) Ρ– ΠΊΠ°Π»ΠΎΠ²ΠΈΡ… мас (кишкова інфСкція). ВСст Π½Π° Ρ‡ΡƒΡ‚Π»ΠΈΠ²Ρ–ΡΡ‚ΡŒ ΠΌΡ–ΠΊΡ€ΠΎΡ„Π»ΠΎΡ€ΠΈ Π±Ρ–ΠΎΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρƒ, ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΉ диско-Π΄ΠΈΡ„ΡƒΠ·Ρ–ΠΉΠ½ΠΈΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ, ΠΏΠΎΠΊΠ°Π·Π°Π², Ρ‰ΠΎ ΠΌΡ–ΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½Ρ–Π·ΠΌΠΈ усіх Π·Ρ€Π°Π·ΠΊΡ–Π² Π±ΡƒΠ»ΠΈ Ρ‡ΡƒΡ‚Π»ΠΈΠ²ΠΈΠΌΠΈ Π΄ΠΎ данофлоксацину. Π—Ρ– Π·Ρ€Π°Π·ΠΊΡ–Π² носового Сксудату (n = 10) Π±ΡƒΠ»ΠΈ Π²ΠΈΠ΄Ρ–Π»Π΅Π½Ρ– Ρ‚Π° Ρ–Π΄Π΅Π½Ρ‚ΠΈΡ„Ρ–ΠΊΠΎΠ²Π°Π½Ρ– Π±Π°ΠΊΡ‚Π΅Ρ€Ρ–Ρ— Streptococcus pneumoniae (n = 10),  StaΡ€hylococcus aureus (n = 4) Ρ– Escherichia coli (n=2). Π— усіх Π·Ρ€Π°Π·ΠΊΡ–Π² ΠΊΠ°Π»ΠΎΠ²ΠΈΡ… мас (n = 12) Π±ΡƒΠ»ΠΈ Π²ΠΈΠ΄Ρ–Π»Π΅Π½Ρ– ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π½Ρ– ΡˆΡ‚Π°ΠΌΠΈ Escherichia coli. Π‘Ρ‚ΡƒΠΏΡ–Π½ΡŒ бактСріостатичної активності данофлоксацину Π²ΠΈΠ·Π½Π°Ρ‡Π°Π»ΠΈ ΡˆΠ»ΡΡ…ΠΎΠΌ встановлСння ΠΉΠΎΠ³ΠΎ ΠΌΡ–Π½Ρ–ΠΌΠ°Π»ΡŒΠ½ΠΎΡ— Ρ–Π½Π³Ρ–Π±ΡƒΡŽΡ‡ΠΎΡ— ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†Ρ–Ρ— (ΠœΠ†Πš) для Π±Π°ΠΊΡ‚Π΅Ρ€Ρ–ΠΉ-ізолятів ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ послідовних Ρ€ΠΎΠ·Π²Π΅Π΄Π΅Π½ΡŒ Ρƒ Ρ€Ρ–Π΄ΠΊΠΎΠΌΡƒ ΠΏΠΎΠΆΠΈΠ²Π½ΠΎΠΌΡƒ сСрСдовищі. Π‘Π΅Ρ€Π΅Π΄Π½Ρ” значСння ΠœΠ†Πš данофлоксацину для ізолятів Streptococcus pneumoniae становило 0,26 Β± 0,13 ΠΌΠΊΠ³/ΠΌΠ», Π° для ізолятів StaΡ€hylococcus aureus – 0,25 Β± 0,075 ΠΌΠΊΠ³/ΠΌΠ». Для ΡˆΡ‚Π°ΠΌΡ–Π² Escherichia coli, Π²ΠΈΠ΄Ρ–Π»Π΅Π½ΠΈΡ… Π· Ρ„Π΅ΠΊΠ°Π»Ρ–ΠΉ ΠΊΡ–Π·, Ρ…Π²ΠΎΡ€ΠΈΡ… Π½Π° ΠΊΠΎΠ»Ρ–Ρ–Π½Ρ„Π΅ΠΊΡ†Ρ–ΡŽ, сСрСднє значСння ΠœΠ†Πš данофлоксацину становило 0,38 Β± 0,12 ΠΌΠΊΠ³/ΠΌΠ» (Π΄Ρ–Π°ΠΏΠ°Π·ΠΎΠ½ Π²Ρ–Π΄ 0,2 Π΄ΠΎ 0,8 ΠΌΠΊΠ³/ΠΌΠ»). ДослідТСння Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½ΠΎΡ— чутливості ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ високий Ρ€Ρ–Π²Π΅Π½ΡŒ бактСріостатичної активності данофлоксацину Ρ‰ΠΎΠ΄ΠΎ Π±Π°ΠΊΡ‚Π΅Ρ€Ρ–ΠΉ, Π·Π±ΡƒΠ΄Π½ΠΈΠΊΡ–Π² рСспіраторної Ρ‚Π° ΠΊΠΈΡˆΠΊΠΎΠ²ΠΎΡ— Ρ–Π½Ρ„Π΅ΠΊΡ†Ρ–ΠΉ Ρƒ ΠΊΡ–Π·. Π¦Π΅ ΠΌΠΎΠΆΠ΅ слуТити ΠΏΡ–Π΄ΡΡ‚Π°Π²ΠΎΡŽ для застосування Ρ…Ρ–ΠΌΡ–ΠΎΡ‚Π΅Ρ€Π°ΠΏΠ΅Π²Ρ‚ΠΈΡ‡Π½ΠΈΡ… засобів Π½Π° основі данофлоксацину Π² Π»Ρ–ΠΊΡƒΠ²Π°Π½Π½Ρ– Π±Π°ΠΊΡ‚Π΅Ρ€Ρ–Π°Π»ΡŒΠ½ΠΈΡ… Ρ–Π½Ρ„Π΅ΠΊΡ†Ρ–ΠΉ Ρƒ ΠΊΡ–Π·, особливо ΠΏΡ€ΠΈ Π΅ΠΌΠΏΡ–Ρ€ΠΈΡ‡Π½ΠΎΠΌΡƒ ΠΏΡ–Π΄Ρ…ΠΎΠ΄Ρ– Π΄ΠΎ Ρ‚Π΅Ρ€Π°ΠΏΡ–Ρ—

    The key features of SARS-CoV-2 leader and NSP1 required for viral escape of NSP1-mediated repression

    Get PDF
    SARS-CoV-2, responsible for the ongoing global pandemic, must overcome a conundrum faced by all viruses. To achieve its own replication and spread, it simultaneously depends on and subverts cellular mechanisms. At the early stage of infection, SARS-CoV-2 expresses the viral nonstructural protein 1 (NSP1), which inhibits host translation by blocking the mRNA entry tunnel on the ribosome; this interferes with the binding of cellular mRNAs to the ribosome. Viral mRNAs, on the other hand, overcome this blockade. We show that NSP1 enhances expression of mRNAs containing the SARS-CoV-2 leader. The first stem-loop (SL1) in viral leader is both necessary and sufficient for this enhancement mechanism. Our analysis pinpoints specific residues within SL1 (three cytosine residues at the positions 15, 19 and 20) and another within NSP1 (R124) which are required for viral evasion, and thus might present promising drug targets. We target SL1 with the anti-sense oligo (ASO) to efficiently and specifically downregulate SARS-CoV-2 mRNA. Additionally, we carried out analysis of a functional interactome of NSP1 using BioID and identified components of anti-viral defense pathways. Our analysis therefore suggests a mechanism by which NSP1 inhibits the expression of host genes while enhancing that of viral RNA. This analysis helps reconcile conflicting reports in the literature regarding the mechanisms by which the virus avoids NSP1 silencing

    Π—Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ диагностики ΠΏΡ€ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΡ… Π±ΠΎΠ»Π΅Π·Π½Π΅ΠΉ Π½Π° пСдиатричСском Ρ„Π°ΠΊΡƒΠ»ΡŒΡ‚Π΅Ρ‚Π΅

    Get PDF
    It is proved in the article to decide studying of bases of theory of diagnostic on pediatric faculty, that allow problem development and formation clinical thinking irrespective of quantity of hours of internal diseases released for teaching.Обосновано ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ основ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ диагностики Π½Π° пСдиатричСском Ρ„Π°ΠΊΡƒΠ»ΡŒΡ‚Π΅Ρ‚Π΅, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ Ρ€Π΅ΡˆΠΈΡ‚ΡŒ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡƒ развития ΠΈ формирования клиничСского ΠΌΡ‹ΡˆΠ»Π΅Π½ΠΈΡ нСзависимо ΠΎΡ‚ количСства часов, ΠΎΡ‚ΠΏΡƒΡ‰Π΅Π½Π½Ρ‹Ρ… для прСподавания Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΡ… Π±ΠΎΠ»Π΅Π·Π½Π΅ΠΉ
    • …
    corecore