27 research outputs found

    Charged Nanoparticles Quench the Propulsion of Active Janus Colloids

    Get PDF
    Active colloidal particles regularly interact with surfaces in applications ranging from microfluidics to sensing. Recent work has revealed the complex nature of these surface interactions for active particles. Herein, we summarize experiments and simulations that show the impact of charged nanoparticles on the propulsion of an active colloid near a boundary. Adding charged nanoparticles not only decreased the average separation distance of a passive colloid because of depletion attraction as expected but also decreased the apparent propulsion of a Janus colloid to near zero. Complementary agentbased simulations considering the impact of hydrodynamics for active Janus colloids were conducted in the range of separation distances inferred from experiment. These simulations showed that propulsion speed decreased monotonically with decreasing average separation distance. Although the trend found in experiments and simulations was in qualitative agreement, there was still a significant difference in the magnitude of speed reduction. The quantitative difference was attributed to the influence of charged nanoparticles on the conductivity of the active particle suspension. Follow-up experiments delineating the impact of depletion and conductivity showed that both contribute to the reduction of speed for an active Janus particle. The experimental and simulated data suggests that it is necessary to consider the synergistic effects between various mechanisms influencing interactions experienced by an active particle near a boundary

    Charged Nanoparticles Quench the Propulsion of Active Janus Colloids

    Get PDF
    Active colloidal particles regularly interact with surfaces in applications ranging from microfluidics to sensing. Recent work has revealed the complex nature of these surface interactions for active particles. Herein, we summarize experiments and simulations that show the impact of charged nanoparticles on the propulsion of an active colloid near a boundary. Adding charged nanoparticles not only decreased the average separation distance of a passive colloid because of depletion attraction as expected but also decreased the apparent propulsion of a Janus colloid to near zero. Complementary agentbased simulations considering the impact of hydrodynamics for active Janus colloids were conducted in the range of separation distances inferred from experiment. These simulations showed that propulsion speed decreased monotonically with decreasing average separation distance. Although the trend found in experiments and simulations was in qualitative agreement, there was still a significant difference in the magnitude of speed reduction. The quantitative difference was attributed to the influence of charged nanoparticles on the conductivity of the active particle suspension. Follow-up experiments delineating the impact of depletion and conductivity showed that both contribute to the reduction of speed for an active Janus particle. The experimental and simulated data suggests that it is necessary to consider the synergistic effects between various mechanisms influencing interactions experienced by an active particle near a boundary

    Novel Wolbachia strains in Anopheles malaria vectors from Sub-Saharan Africa.

    Get PDF
    Background:  Wolbachia, a common insect endosymbiotic bacterium that can influence pathogen transmission and manipulate host reproduction, has historically been considered absent from the  Anopheles (An.) genera, but has recently been found in  An. gambiae s.l. populations in West Africa.  As there are numerous  Anopheles species that have the capacity to transmit malaria, we analysed a range of species across five malaria endemic countries to determine  Wolbachia prevalence rates, characterise novel  Wolbachia strains and determine any correlation between the presence of  Plasmodium,  Wolbachia and the competing bacterium  Asaia. Methods:  Anopheles adult mosquitoes were collected from five malaria-endemic countries: Guinea, Democratic Republic of the Congo (DRC), Ghana, Uganda and Madagascar, between 2013 and 2017.  Molecular analysis was undertaken using quantitative PCR, Sanger sequencing,  Wolbachia multilocus sequence typing (MLST) and high-throughput amplicon sequencing of the bacterial  16S rRNA gene.  Results: Novel  Wolbachia strains were discovered in five species:  An. coluzzii,  An. gambiae s.s.,  An. arabiensis,  An. moucheti and  An. species A, increasing the number of  Anopheles species known to be naturally infected. Variable prevalence rates in different locations were observed and novel strains were phylogenetically diverse, clustering with  Wolbachia supergroup B strains.  We also provide evidence for resident strain variants within  An. species A.  Wolbachia is the dominant member of the microbiome in  An. moucheti and  An. species A but present at lower densities in  An. coluzzii.  Interestingly, no evidence of  Wolbachia/Asaia co-infections was seen and  Asaia infection densities were shown to be variable and location dependent.  Conclusions: The important discovery of novel  Wolbachia strains in  Anopheles provides greater insight into the prevalence of resident  Wolbachia strains in diverse malaria vectors.  Novel  Wolbachia strains (particularly high-density strains) are ideal candidate strains for transinfection to create stable infections in other  Anopheles mosquito species, which could be used for population replacement or suppression control strategies

    Socializing One Health: an innovative strategy to investigate social and behavioral risks of emerging viral threats

    Get PDF
    In an effort to strengthen global capacity to prevent, detect, and control infectious diseases in animals and people, the United States Agency for International Development’s (USAID) Emerging Pandemic Threats (EPT) PREDICT project funded development of regional, national, and local One Health capacities for early disease detection, rapid response, disease control, and risk reduction. From the outset, the EPT approach was inclusive of social science research methods designed to understand the contexts and behaviors of communities living and working at human-animal-environment interfaces considered high-risk for virus emergence. Using qualitative and quantitative approaches, PREDICT behavioral research aimed to identify and assess a range of socio-cultural behaviors that could be influential in zoonotic disease emergence, amplification, and transmission. This broad approach to behavioral risk characterization enabled us to identify and characterize human activities that could be linked to the transmission dynamics of new and emerging viruses. This paper provides a discussion of implementation of a social science approach within a zoonotic surveillance framework. We conducted in-depth ethnographic interviews and focus groups to better understand the individual- and community-level knowledge, attitudes, and practices that potentially put participants at risk for zoonotic disease transmission from the animals they live and work with, across 6 interface domains. When we asked highly-exposed individuals (ie. bushmeat hunters, wildlife or guano farmers) about the risk they perceived in their occupational activities, most did not perceive it to be risky, whether because it was normalized by years (or generations) of doing such an activity, or due to lack of information about potential risks. Integrating the social sciences allows investigations of the specific human activities that are hypothesized to drive disease emergence, amplification, and transmission, in order to better substantiate behavioral disease drivers, along with the social dimensions of infection and transmission dynamics. Understanding these dynamics is critical to achieving health security--the protection from threats to health-- which requires investments in both collective and individual health security. Involving behavioral sciences into zoonotic disease surveillance allowed us to push toward fuller community integration and engagement and toward dialogue and implementation of recommendations for disease prevention and improved health security

    Agricultural Biomass Waste to Biochar: A Review on Biochar Applications Using Machine Learning Approach and Circular Economy

    No full text
    Biochar has gained attention as an alternative source of solid energy and for the proper disposal of agricultural biomass waste (ABW). Microwave-assisted pyrolysis (MAP) is a promising approach for the production of biochar. This review article presents the beneficial use of biochar for soil fertilization, machine learning (ML), the circular bioeconomy, and the technology readiness level. The use of machine learning techniques helps to design, predict, and optimize the process. It can also improve the accuracy and efficacy of the biochar production process, thereby reducing costs. Furthermore, the use of biochar as a soil amendment can be an attractive option for farmers. The incorporation of biochar into soil has been shown to improve soil fertility, water retention, and crop productivity. This can lead to reduced dependence on synthetic fertilizers and increased agricultural yields. The development of a biochar economy has the potential to create new job opportunities and increase the national gross domestic product (GDP). Small-scale enterprises can play a significant role in the production and distribution of biochar, providing value-added products and helping to promote sustainable agriculture

    Effects of pre-operative isolation on postoperative pulmonary complications after elective surgery: an international prospective cohort study

    No full text
    We aimed to determine the impact of pre-operative isolation on postoperative pulmonary complications after elective surgery during the global SARS-CoV-2 pandemic. We performed an international prospective cohort study including patients undergoing elective surgery in October 2020. Isolation was defined as the period before surgery during which patients did not leave their house or receive visitors from outside their household. The primary outcome was postoperative pulmonary complications, adjusted in multivariable models for measured confounders. Pre-defined sub-group analyses were performed for the primary outcome. A total of 96,454 patients from 114 countries were included and overall, 26,948 (27.9%) patients isolated before surgery. Postoperative pulmonary complications were recorded in 1947 (2.0%) patients of which 227 (11.7%) were associated with SARS-CoV-2 infection. Patients who isolated pre-operatively were older, had more respiratory comorbidities and were more commonly from areas of high SARS-CoV-2 incidence and high-income countries. Although the overall rates of postoperative pulmonary complications were similar in those that isolated and those that did not (2.1% vs 2.0%, respectively), isolation was associated with higher rates of postoperative pulmonary complications after adjustment (adjusted OR 1.20, 95%CI 1.05-1.36, p = 0.005). Sensitivity analyses revealed no further differences when patients were categorised by: pre-operative testing; use of COVID-19-free pathways; or community SARS-CoV-2 prevalence. The rate of postoperative pulmonary complications increased with periods of isolation longer than 3 days, with an OR (95%CI) at 4-7 days or >= 8 days of 1.25 (1.04-1.48), p = 0.015 and 1.31 (1.11-1.55), p = 0.001, respectively. Isolation before elective surgery might be associated with a small but clinically important increased risk of postoperative pulmonary complications. Longer periods of isolation showed no reduction in the risk of postoperative pulmonary complications. These findings have significant implications for global provision of elective surgical care

    Alirocumab and cardiovascular outcomes after acute coronary syndrome

    No full text
    BACKGROUN
    corecore