18 research outputs found

    Optical Emission Spectroscopy of Magnethron Discharge Ar/Cu Plasma

    Get PDF
    Plasma parameters (excitation temperature and electron density) of pulsing magnetron discharge is studied by optical emission spectroscopy. Such discharges are usually used as effective sources in sputtering or deposition processes. Vapor admixtures in argon plasma define mainly the temperature and electron density in such discharges. This is the feature, which is typically takes place in plasma of discharge between contacts/electrodes in switching devices of electric technology circuits

    Submicron-sized MoRe-doped Si-MoRe Josephson junctions with a low specific capacitance

    Get PDF
    Abstract We start with a short look at the problem of low-capacitance Josephson junctions, its history, and actual state-of-the-art. It is argued that such devices are important for applications requiring nonhysteretic current-voltage characteristics since reduction of capacitance by several times makes it possible to increase the device resistance by the same amount while keeping the McCumber-Stewart damping parameter unaltered. Moreover, at very high frequencies the capacitance in the RCSJ circuit with a parallel connection starts to shunt the superconducting current component due to reduction of the corresponding reactance inversely proportional to C. Hence, to extend the operating frequency range of a Josephson junction its capacitance should be as small as possible. As a solution of a new type of the Josephson device, less resistive and with smaller capacitance, we propose and realize a submicron-sized trilayer with tens nm-thick Si interlayer doped by metallic ultra-small inclusions and superconducting Mo-Re alloy electrodes

    Unusual two-dimensional behavior of iron-based superconductors with low anisotropy

    Get PDF
    © 2017 American Physical Society. We study angular-dependent magnetoresistance in iron-based superconductors Ba1-xNaxFe2As2 and FeTe1-xSex. Both superconductors have relatively small anisotropies γ∼2 and exhibit a three-dimensional (3D) behavior at low temperatures. However, we observe that they start to exhibit a profound two-dimensional behavior at elevated temperatures and in applied magnetic field parallel to the surface. We conclude that the unexpected two-dimensional (2D) behavior of the studied low-anisotropic superconductors is not related to layeredness of the materials, but is caused by appearance of surface superconductivity when magnetic field exceeds the upper critical field Hc2(T) for destruction of bulk superconductivity. We argue that the corresponding 3D-2D bulk-to-surface dimensional transition can be used for accurate determination of the upper critical field

    Unusual two-dimensional behavior of iron-based superconductors with low anisotropy

    No full text
    © 2017 American Physical Society. We study angular-dependent magnetoresistance in iron-based superconductors Ba1-xNaxFe2As2 and FeTe1-xSex. Both superconductors have relatively small anisotropies γ∼2 and exhibit a three-dimensional (3D) behavior at low temperatures. However, we observe that they start to exhibit a profound two-dimensional behavior at elevated temperatures and in applied magnetic field parallel to the surface. We conclude that the unexpected two-dimensional (2D) behavior of the studied low-anisotropic superconductors is not related to layeredness of the materials, but is caused by appearance of surface superconductivity when magnetic field exceeds the upper critical field Hc2(T) for destruction of bulk superconductivity. We argue that the corresponding 3D-2D bulk-to-surface dimensional transition can be used for accurate determination of the upper critical field
    corecore