1,419 research outputs found
Direct Depolymerization Coupled to Liquid Extraction Surface Analysis-High-Resolution Mass Spectrometry for the Characterization of the Surface of Plant Tissues
The cuticle, the outermost layer covering the epidermis of most aerial organs of land plants, can have a heterogeneous composition even on the surface of the same organ. The main cuticle component is the polymer cutin which, depending on its chemical composition and structure, can have different biophysical properties. In this study, we introduce a new on-surface depolymerization method coupled to liquid extraction surface analysis (LESA) high-resolution mass spectrometry (HRMS) for a fast and spatially resolved chemical characterization of the cuticle of plant tissues. The method is composed of an on-surface saponification, followed by extraction with LESA using a chloroform-acetonitrile-water (49:49:2) mixture and direct HRMS detection. The method is also compared with LESA-HRMS without prior depolymerization for the analysis of the surface of the petals of Hibiscus richardsonii flowers, which have a ridged cuticle in the proximal region and a smooth cuticle in the distal region. We found that on-surface saponification is effective enough to depolymerize the cutin into its monomeric constituents thus allowing detection of compounds that were not otherwise accessible without a depolymerization step. The effect of the depolymerization procedure was more pronounced for the ridged/proximal cuticle, which is thicker and richer in epicuticular waxes compared with the cuticle in the smooth/distal region of the petal
The root-soil system of Norway spruce subjected to turning moment: resistance as a function of rotation
The reactions of trees to wind, rockfall, and snow and debris flow depend largely on how strong and deformable their anchorage in the soil is. Here, the resistive turning moment M of the root–soil system as a function of the rotation ϕ at the stem base plays the major role. M(ϕ) describes the behavior of the root– soil system when subject to rotational moment, with the maximum M(ϕ) indicating the anchorage strength M a of the tree. We assessed M(ϕ) of 66 Norway spruce (Picea abies L. Karst) by pulling them over with a winch. These 45- to 170-year-old trees grew at sites of low and high elevation, with a diameter at breast height DBH = 14–69 cm and a height H = 9–42 m. M(ϕ) displayed a strong nonlinear behavior. M a was reached at a lower ϕ for large trees than for small trees. Thus overhanging tree weight contributed less to M a for the large trees. Overturning also occurred at a lower ϕ for the large trees. These observations show that the rotational ductility of the root–soil system is higher for small trees. M a could be described by four monovariate linear regression equations of tree weight, stem weight, stem volume and DBH ² ·H (0.80 R ² ϕ at M a, ϕ a, by a power law of DBH²·H (R ² = 0.85). We found significantly higher M a for the low-elevation spruces than for the high-elevation spruces, which were more shallowly anchored, but no significant difference in ϕ a. The 66 curves of M(ϕ), normalized (n) by M a in M-direction and by ϕ a in ϕ-direction, yielded one characteristic average curve: Mn (ϕn) M¯nϕn . Using this average curve and the predictions of M a and ϕ a, it is shown that M(ϕ) and the curves associated with M(ϕ) can be predicted with a relative standard error ≤25%. The parameterization of M(ϕ) by tree size and weight is novel and provides useful information for predicting with finite-element computer models how trees will react to natural hazards
Recommended from our members
Characterizing an extractive electrospray ionization (EESI) source for the online mass spectrometry analysis of organic aerosols.
Organic compounds comprise a major fraction of tropospheric aerosol and understanding their chemical complexity is a key factor for determining their climate and health effects. We present and characterize here a new online technique for measuring the detailed chemical composition of organic aerosols, namely extractive electrospray ionization mass spectrometry (EESI-MS). Aerosol particles composed of soluble organic compounds were extracted into and ionized by a solvent electrospray, producing molecular ions from the aerosol with minimal fragmentation. We demonstrate here that the technique has a time resolution of seconds and is capable of making stable measurements over several hours. The ion signal in the MS was linearly correlated with the mass of aerosol delivered to the EESI source over the range tested (3-600 μg/m(3)) and was independent of particle size and liquid water content, suggesting that the entire particle bulk is extracted for analysis. Tandem MS measurements enabled detection of known analytes in the sub-μg/m(3) range. Proof-of-principle measurements of the ozonolysis of oleic acid aerosol (20 μg/m(3)) revealed the formation of a variety of oxidation products in good agreement with previous offline studies. This demonstrates the technique's potential for studying the product-resolved kinetics of aerosol-phase chemistry at a molecular level with high sensitivity and time resolution.This is the author's accepted manuscript. The final version is published by ACS in Environmental Science and Technology and can be found here: http://pubs.acs.org/doi/abs/10.1021/es305199h?prevSearch=%255BContrib%253A%2Bgallimore%252C%2Bp.%2Bj.%255D&searchHistoryKey=
Direct Injection Liquid Chromatography High-Resolution Mass Spectrometry for Determination of Primary and Secondary Terrestrial and Marine Biomarkers in Ice Cores
Many atmospheric organic compounds are long-lived enough to be transported from their sources to polar regions and high mountain environments where they can be trapped in ice archives. While inorganic components in ice archives have been studied extensively to identify past climate changes, organic compounds have rarely been used to assess paleo-environmental changes, mainly due to the lack of suitable analytical methods. This study presents a new method of direct injection HPLC-MS analysis, without the need of pre-concentrating the melted ice, for the determination of a series of novel biomarkers in ice-core samples indicative of primary and secondary terrestrial and marine organic aerosol sources. Eliminating a preconcentration step reduces contamination potential and decreases the required sample volume thus allowing a higher time resolution in the archives. The method is characterised by limits of detections (LODs) in the range of 0.01-15 ppb, depending on the analyte, and accuracy evaluated through an interlaboratory comparison. We find that many components in secondary organic aerosols (SOA) are clearly detectable at concentrations comparable to those previously observed in replicate preconcentrated ice samples from the Belukha glacier, Russian Altai Mountains. Some compounds with low recoveries in preconcentration steps are now detectable in samples with this new direct injection method significantly increasing the range of environmental processes and sources that become accessible for paleo-climate studies
Comparison of on-line and off-line methods to quantify reactive oxygen species (ROS) in atmospheric aerosols
Atmospheric aerosol particle concentrations have been linked with a wide range of pulmonary and cardio-vascular diseases but the particle properties responsible for these negative health effects are largely unknown. It is often speculated that reactive oxygen species (ROS) present in atmospheric particles lead to oxidative stress in, and ultimately disease of, the human lung. The quantification of ROS is highly challenging because some ROS components such as radicals are highly reactive and therefore short-lived. Thus, fast analysis methods are likely advantageous over methods with a long delay between aerosol sampling and ROS analysis. We present for the first time a detailed comparison of conventional off-line and fast on-line methods to quantify ROS in organic aerosols. For this comparison a new and fast on-line instrument was built and characterized to quantify ROS in aerosol particles with high sensitivity and a limit of detection of 4 nmol H2O2 equivalents per m3 air. ROS concentrations are measured with a time resolution of approximately 15 min, which allows the tracking of fast changing atmospheric conditions. The comparison of the off-line and on-line method shows that, in oxidized organic model aerosol particles, the majority of ROS have a very short lifetime of a few minutes whereas a small fraction is stable for a day or longer. This indicates that off-line techniques, where there is often a delay of hours to days between particle collection and ROS analysis, may severely underestimate true ROS concentrations and that fast on-line techniques are necessary for a reliable ROS quantification in atmospheric aerosol particles and a meaningful correlation with health outcomes.This work was supported by the Natural Environment Research Council (NE/H52449X/1), the Velux Stiftung (Project 593) and an ERC starting grant (grant no. 279405).This is the accepted manuscript version. The final published version is available from Elsevier at http://www.sciencedirect.com/science/article/pii/S1352231014002787
Characterization of high molecular weight compounds in urban atmospheric particles
International audienceThe chemical nature of a large fraction of ambient organic aerosol particles is not known. However, high molecular weight compounds (often named humic-like substances) have recently been detected by several authors and these compounds seem to account for a significant fraction of the total organic aerosol mass. Due to the unknown chemical structure of these compounds a quantification as well as a determination of their molecular weight is difficult. In this paper we investigate water soluble humic-like substances in ambient urban aerosol using size exclusion chromatography-UV spectroscopy and laser desorption/ionization mass spectrometry. A careful method evaluation shows that both methods complement each other and that both are needed to learn more about the molecular weight distribution and the concentration of humic-like substances. An upper molecular weight limit of humic-like substances of about 700 Da and a concentration of 0.2?1.8 µg/m3 air can be estimated corresponding to 8?33% of the total organic carbon for an urban background site
The root-soil system of Norway spruce subjected to turning moment: resistance as a function of rotation
The reactions of trees to wind, rockfall, and snow and debris flow depend largely on how strong and deformable their anchorage in the soil is. Here, the resistive turning moment M of the root-soil system as a function of the rotation ϕ at the stem base plays the major role. M(ϕ) describes the behavior of the root-soil system when subject to rotational moment, with the maximum M(ϕ) indicating the anchorage strength M a of the tree. We assessed M(ϕ) of 66 Norway spruce (Picea abies L. Karst) by pulling them over with a winch. These 45- to 170-year-old trees grew at sites of low and high elevation, with a diameter at breast height DBH = 14-69cm and a height H = 9-42m. M(ϕ) displayed a strong nonlinear behavior. M a was reached at a lower ϕ for large trees than for small trees. Thus overhanging tree weight contributed less to M a for the large trees. Overturning also occurred at a lower ϕ for the large trees. These observations show that the rotational ductility of the root-soil system is higher for small trees. M a could be described by four monovariate linear regression equations of tree weight, stem weight, stem volume and DBH 2 ·H (0.80 < R 2 < 0.95), and ϕ at M a, ϕ a, by a power law of DBH2·H (R 2 = 0.85). We found significantly higher M a for the low-elevation spruces than for the high-elevation spruces, which were more shallowly anchored, but no significant difference in ϕ a. The 66 curves of M(ϕ), normalized (n) by M a in M-direction and by ϕ a in ϕ-direction, yielded one characteristic average curve: . Using and the predictions of M a and ϕ a, it is shown that M(ϕ) and the curves associated with M(ϕ) can be predicted with a relative standard error ≤25%. The parameterization of M(ϕ) by tree size and weight is novel and provides useful information for predicting with finite-element computer models how trees will react to natural hazard
- …
