38 research outputs found

    Histopathological and molecular heterogeneity among individuals with dementia associated with Presenilin mutations

    Get PDF
    BACKGROUND: Mutations in the presenilin (PSEN) genes are associated with early-onset familial Alzheimer's disease (FAD). Biochemical characterizations and comparisons have revealed that many PSEN mutations alter gamma-secretase activity to promote accumulation of toxic Abeta42 peptides. In this study, we compared the histopathologic and biochemical profiles of ten FAD cases expressing independent PSEN mutations and determined the degradation patterns of amyloid-beta precursor protein (AbetaPP), Notch, N-cadherin and Erb-B4 by gamma-secretase. In addition, the levels of Abeta40/42 peptides were quantified by ELISA. RESULTS: We observed a wide variation in type, number and distribution of amyloid deposits and neurofibrillary tangles. Four of the ten cases examined exhibited a substantial enrichment in the relative proportions of Abeta40 over Abeta42. The AbetaPP N-terminal and C-terminal fragments and Tau species, assessed by Western blots and scanning densitometry, also demonstrated a wide variation. The Notch-1 intracellular domain was negligible by Western blotting in seven PSEN cases. There was significant N-cadherin and Erb-B4 peptide heterogeneity among the different PSEN mutations. CONCLUSION: These observations imply that missense mutations in PSEN genes can alter a range of key gamma-secretase activities to produce an array of subtly different biochemical, neuropathological and clinical manifestations. Beyond the broad common features of dementia, plaques and tangles, the various PSEN mutations resulted in a wide heterogeneity and complexity and differed from sporadic AD.Fil: Maarouf, Chera L.. Sun Health Research Institute; Estados UnidosFil: Daugs, Ian D.. Sun Health Research Institute; Estados UnidosFil: Spina, Salvatore. Universita Degli Studi Di Siena; Italia. Indiana University; Estados UnidosFil: Vidal, Ruben. Indiana University; Estados UnidosFil: Kokjohn, Tyler A.. Sun Health Research Institute; Estados Unidos. Midwestern University; Estados UnidosFil: Patton, R. Lyle. Sun Health Research Institute; Estados UnidosFil: Kalback, Walter M.. Sun Health Research Institute; Estados UnidosFil: Luehrs, Dean C.. Sun Health Research Institute; Estados UnidosFil: Walker, Douglas G.. Sun Health Research Institute; Estados UnidosFil: Castaño, Eduardo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Beach, Thomas G.. Sun Health Research Institute; Estados UnidosFil: Ghetti, Bernardino. Indiana University; Estados UnidosFil: Roher, Alex E.. Sun Health Research Institute; Estados Unido

    The evolution of Aβ peptide burden in the APP23 transgenic mice: implications for Aβ deposition in Alzheimer disease

    No full text
    Background: High levels of Aβ in the cerebral cortex distinguish demented Alzheimer’s disease (AD) from nondemented elderly individuals, suggesting that decreased amyloid-beta (Aβ) peptide clearance from the brain is a key precipitating factor in AD.Materials and Methods: The levels of Aβ in brain and plasma as well as apolipoprotein E (ApoE) in brain were investigated by enzyme-linked immunosorbent assay (ELISA) and Western blotting at various times during the life span of the APP23 transgenic (Tg) and control mice. Histochemistry and immunocytochemistry were used to assess the morphologic characteristics of the brain parenchymal and cerebrovascular amyloid deposits and the intracellular amyloid precursor protein (APP) deposits in the APP23 Tg mice.Results: No significant differences were found in the plasma levels of Aβ between the APP23 Tg and control mice from 2–20 months of age. In contrast, soluble Aβ levels in the brain were continually elevated, increasing 4-fold at 2 months and 33-fold in the APP23 Tg mice at 20 months of age when compared to the control mice. Soluble Aβ42 was about 60% higher than Aβ40. In the APP23 Tg mice, insoluble Aβ40 remained at basal levels in the brain until 9 months and then rose to 680 µg/g cortex by 20 months. Insoluble A?40 was negligible in non-Tg mice at all ages. Insoluble Aβ42 in APP23 Tg mice rose to 60 µg/g cortex at 20 months, representing 24 times the control Aβ42 levels. Elevated levels of ApoE in the brain were observed in the APP23 Tg mice at 2 months of age, becoming substantially higher by 20 months. ApoE colocalized with Aβ in the plaques. Beta-amyloid precursor protein (βAPP) deposits were detected within the neuronal cytoplasm from 4 months of age onward. Amyloid angiopathy in the APP23 Tg mice increased markedly with age, being by far more severe than in the Tg2576 mice.Conclusions: We suggest that the APP23 Tg mouse may develop an earlier blockage in Aβ clearance than the Tg2576 mice, resulting in a more severe accumulation of Aβ in the perivascular drainage pathways and in the brain. Both Tg mice reflect decreased Aβ elimination and as models for the amyloid cascade they are useful to study AD pathophysiology and therapy

    Molecular Differences and Similarities Between Alzheimer\u27s Disease and the 5XFAD Transgenic Mouse Model of Amyloidosis

    No full text
    Transgenic (Tg) mouse models of Alzheimer\u27s disease (AD) have been extensively used to study the pathophysiology of this dementia and to test the efficacy of drugs to treat AD. The 5XFAD Tg mouse, which contains two presenilin-1 and three amyloid precursor protein (APP) mutations, was designed to rapidly recapitulate a portion of the pathologic alterations present in human AD. APP and its proteolytic peptides, as well as apolipoprotein E and endogenous mouse tau, were investigated in the 5XFAD mice at 3 months, 6 months, and 9 months. AD and nondemented subjects were used as a frame of reference. APP, amyloid-beta (Aβ) peptides, APP C-terminal fragments (CT99, CT83, AICD), β-site APP-cleaving enzyme, and APLP1 substantially increased with age in the brains of 5XFAD mice. Endogenous mouse tau did not show age-related differences. The rapid synthesis of Aβ and its impact on neuronal loss and neuroinflammation make the 5XFAD mice a desirable paradigm to model AD

    Molecular Differences and Similarities between Alzheimer's Disease and the 5XFAD Transgenic Mouse Model of Amyloidosis

    No full text
    Transgenic (Tg) mouse models of Alzheimer's disease (AD) have been extensively used to study the pathophysiology of this dementia and to test the efficacy of drugs to treat AD. The 5XFAD Tg mouse, which contains two presenilin-1 and three amyloid precursor protein (APP) mutations, was designed to rapidly recapitulate a portion of the pathologic alterations present in human AD. APP and its proteolytic peptides, as well as apolipoprotein E and endogenous mouse tau, were investigated in the 5XFAD mice at 3 months, 6 months, and 9 months. AD and nondemented subjects were used as a frame of reference. APP, amyloid-beta (Aβ) peptides, APP C-terminal fragments (CT99, CT83, AICD), β-site APP-cleaving enzyme, and APLP1 substantially increased with age in the brains of 5XFAD mice. Endogenous mouse tau did not show age-related differences. The rapid synthesis of Aβ and its impact on neuronal loss and neuroinflammation make the 5XFAD mice a desirable paradigm to model AD

    Neuropathological and biochemical assessments of an Alzheimer’s disease patient treated with the γ-secretase inhibitor semagacestat

    No full text
    Amyloid deposition has been implicated as the key determinant of Alzheimer’s disease (AD) pathogenesis. Interventions to antagonize amyloid accumulation and mitigate dementia are now under active investigation. We conducted a combined clinical, biochemical and neuropathological assessment of a participant in a clinical trial of the γ-secretase inhibitor, semagacestat. This patient received a daily oral dose of 140 mg of semagacestat for approximately 76 weeks. Levels of brain amyloid-β (Aβ) peptides were quantified using enzyme-linked immunosorbent assays (ELISA). Western blot/scanning densitometry was performed to reveal BACE1, presenilin1, amyloid precursor protein (APP) and its proteolysis-produced C-terminal peptides APP-CT99 and APP-CT83 as well as several γ-secretase substrates. To serve as a frame of reference, the ELISA and Western analyses were performed in parallel on samples from neuropathologically confirmed non-demented control (NDC) and AD subjects who did not receive semagacestat. Neuropathology findings confirmed a diagnosis of AD with frequent amyloid deposits and neurofibrillary tangles in most areas of the cortex and subcortical nuclei as well as cerebellar amyloid plaques. Mean levels of Tris-soluble Aβ40 and glass-distilled formic acid (GDFA)/guanidine hydrochloride (GHCl)-extractable Aβ40 in the frontal lobe and GDFA/GHCl-soluble Aβ40 in the temporal lobe were increased 4.2, 9.5 and 7.7-fold, respectively, in the semagacestat-treated subject compared to those observed in the non-treated AD group. In addition, GDFA/GHCl-extracted Aβ42 was increased 2-fold in the temporal lobe relative to non-treated AD cases. No major changes in APP, β- and γ-secretase and CT99/CT83 were observed between the semagacestat-treated subject compared to either NDC or AD cases. Furthermore, the levels of γ-secretase substrates in the semagacestat-treated subject and the reference groups were also similar. Interestingly, there were significant alterations in the levels of several γ-secretase substrates between the NDC and non-treated AD subjects. This is the first reported case study of an individual enrolled in the semagacestat clinical trial. The subject of this study remained alive for ~7 months after treatment termination, therefore it is difficult to conclude whether the outcomes observed represent a consequence of semagacestat therapy. Additional evaluations of trial participants, including several who expired during the course of treatment, may provide vital clarification regarding the impacts and aftermath of γ-secretase inhibition

    Interaction of cardiovascular disease and neurodegeneration: Transcranial Doppler ultrasonography and Alzheimer\u27s disease

    No full text
    Objective: Recent post-mortem studies have reported that the severity of atheromatous deposits in the circle of Willis is significantly greater, relative to non-demented (ND) elderly persons, in subjects with neuropathologically diagnosed Alzheimer\u27s disease (AD). Additionally, the severity of intracranial atherosclerosis correlates significantly with the densities of neuritic plaques and neurofibrillary tangles. In this study, we examine the arteries of the circle of Willis by transcranial Doppler (TCD) ultrasonography. Methods: TCD was used to measure, in 25 AD patients and 30 ND elderly subjects, mean flow velocities and pulsatility indices in 16 different segments of the circle of Willis. The data were compared with and without adjustment for age, gender and systolic blood pressure. Results: The AD patients had systematically higher pulsatility indices (p\u3c0.005) than the ND group. Incremental increases of pulsatility indices in these segments had odds ratios ranging from 1.8 to 48 for the presence of AD when adjusted for age, gender and systolic blood pressure. The left internal carotid artery siphon and the left posterior cerebral artery were the two vessels that were strongly associated with AD diagnosis. Mean flow velocities were generally lower in patients with AD but the differences did not reach the significance level. Discussion: The pulsatility indices of the arteries of AD patients were generally greater than those of similarly-aged ND subjects. This difference is most likely due to increased arterial wall rigidity imposed by atherosclerotic changes. Atherosclerotic disease of intracranial arteries may be a risk factor for AD. © 2006 W. S. Maney & Son Ltd

    Neurochemical profile of dementia pugilistica

    No full text
    Dementia pugilistica (DP), a suite of neuropathological and cognitive function declines after chronic traumatic brain injury (TBI), is present in approximately 20% of retired boxers. Epidemiological studies indicate TBI is a risk factor for neurodegenerative disorders including Alzheimer disease (AD) and Parkinson disease (PD). Some biochemical alterations observed in AD and PD may be recapitulated in DP and other TBI persons. In this report, we investigate long-term biochemical changes in the brains of former boxers with neuropathologically confirmed DP. Our experiments revealed biochemical and cellular alterations in DP that are complementary to and extend information already provided by histological methods. ELISA and one-dimensional and two dimensional Western blot techniques revealed differential expression of select molecules between three patients with DP and three age-matched non-demented control (NDC) persons without a history of TBI. Structural changes such as disturbances in the expression and processing of glial fibrillary acidic protein, tau, and α-synuclein were evident. The levels of the Aβ-degrading enzyme neprilysin were reduced in the patients with DP. Amyloid-β levels were elevated in the DP participant with the concomitant diagnosis of AD. In addition, the levels of brain-derived neurotrophic factor and the axonal transport proteins kinesin and dynein were substantially decreased in DP relative to NDC participants. Traumatic brain injury is a risk factor for dementia development, and our findings are consistent with permanent structural and functional damage in the cerebral cortex and white matter of boxers. Understanding the precise threshold of damage needed for the induction of pathology in DP and TBI is vital. © Mary Ann Liebert, Inc
    corecore