403 research outputs found

    Topological Landau-Ginzburg Theory for Vortices in Superfluid 4^4He

    Full text link
    We propose a new Landau-Ginzburg theory for arbitrarily shaped vortex strings in superfluid 4^4He. The theory contains a topological term and directly describes vortex dynamics. We introduce gauge fields in order to remove singularities from the Landau-Ginzburg order parameter of the superfluid, so that two kinds of gauge symmetries appear, making the continuity equation and conservation of the total vorticity manifest. The topological term gives rise to the Berry phase term in the vortex mechanical actions.Comment: LATEX, 9 page

    Neutral Particles in Light of the Majorana-Ahluwalia Ideas

    Get PDF
    The first part of this article (Sections I and II) presents oneself an overview of theory and phenomenology of truly neutral particles based on the papers of Majorana, Racah, Furry, McLennan and Case. The recent development of the construct, undertaken by Ahluwalia [{\it Mod. Phys. Lett. A}{\bf 9} (1994) 439; {\it Acta Phys. Polon. B}{\bf 25} (1994) 1267; Preprints LANL LA-UR-94-1252, LA-UR-94-3118], could be relevant for explanation of the present experimental situation in neutrino physics and astrophysics. In Section III the new fundamental wave equations for self/anti-self conjugate type-II spinors, proposed by Ahluwalia, are re-casted to covariant form. The connection with the Foldy-Nigam-Bargmann-Wightman- Wigner (FNBWW) type quantum field theory is found. The possible applications to the problem of neutrino oscillations are discussed.Comment: REVTEX file. 21pp. No figure

    String Nature of Confinement in (Non-)Abelian Gauge Theories

    Get PDF
    Recent progress achieved in the solution of the problem of confinement in various (non-)Abelian gauge theories by virtue of a derivation of their string representation is reviewed. The theories under study include QCD within the so-called Method of Field Correlators, QCD-inspired Abelian-projected theories, and compact QED in three and four space-time dimensions. Various nonperturbative properties of the vacua of the above mentioned theories are discussed. The relevance of the Method of Field Correlators to the study of confinement in Abelian models, allowing for an analytical description of this phenomenon, is illustrated by an evaluation of field correlators in these models.Comment: 100 pages, LaTeX2e, no figures, 1 table, based on the Ph.D. thesises at the Humboldt University of Berlin (1999) (available under http://dochost.rz.hu-berlin.de) and the Institute of Theoretical and Experimental Physics, Moscow (2000), new results are included, extended with respect to the journal versio

    Remark on the computation of mode sums

    Full text link
    The computation of mode sums of the types encountered in basic quantum field theoretic applications is addressed with an emphasis on their expansions into functions of distance that can be interpreted as potentials. We show how to regularize and calculate the Casimir energy for the continuum Nambu-Goto string with massive ends as well as for the discrete Isgur-Paton non-relativistic string with massive ends. As an additional example, we examine the effect on the interquark potential of a constant Kalb-Ramond field strength interacting with a QCD string.Comment: 10 pages ReVTeX, 3 PostScript figures. Introductory material and references added. To appear in Phys Rev

    Performance of Monolayer Graphene Nanomechanical Resonators with Electrical Readout

    Full text link
    The enormous stiffness and low density of graphene make it an ideal material for nanoelectromechanical (NEMS) applications. We demonstrate fabrication and electrical readout of monolayer graphene resonators, and test their response to changes in mass and temperature. The devices show resonances in the MHz range. The strong dependence of the resonant frequency on applied gate voltage can be fit to a membrane model, which yields the mass density and built-in strain. Upon removal and addition of mass, we observe changes in both the density and the strain, indicating that adsorbates impart tension to the graphene. Upon cooling, the frequency increases; the shift rate can be used to measure the unusual negative thermal expansion coefficient of graphene. The quality factor increases with decreasing temperature, reaching ~10,000 at 5 K. By establishing many of the basic attributes of monolayer graphene resonators, these studies lay the groundwork for applications, including high-sensitivity mass detectors

    Non Abelian BF theories with sources and 2-D gravity

    Get PDF
    We study the interaction of non-Abelian topological BFBF theories defined on two dimensional manifolds with point sources carrying non-Abelian charges. We identify the most general solution for the field equations on simply and multiply connected two-manifolds. Taking the particular choice of the so-called extended Poincar\'e group as the gauge group we discuss how recent discussions of two dimensional gravity models do fit in this formalism.Comment: 20 pages, Latex, To appear in Phys Rev D5

    Vacuum Structure and the Axion Walls in Gluodynamics and QCD with Light Quarks

    Get PDF
    Large N gluodynamics was shown to have a set of metastable vacua with the gluonic domain walls interpolating between them. The walls may separate the genuine vacuum from an excited one, or two excited vacua which are unstable at finite N (here N is the number of colors). One may attempt to stabilize them by switching on the axion field. We study how the light quarks and the axion affect the structure of the domain walls. In pure gluodynamics (with the axion field) the axion walls acquire a very hard gluonic core. Thus, we deal with a wall "sandwich" which is stable at finite N. In the case of the minimal axion, the wall "sandwich" is in fact a "2-pi" wall, i.e., the corresponding field configuration interpolates between identical hadronic vacua. The same properties hold in QCD with three light quarks and very large number of colors. However, in the realistic case of three-color QCD the phase corresponding to the axion field profile in the axion wall is screened by a dynamical phase associated with the eta-prime, so that the gluon component of the wall is not excited. We propose a toy Lagrangian which models these properties and allows one to get exact solutions for the domain walls.Comment: 22 pages Latex, no figure

    Experimental loophole-free violation of a Bell inequality using entangled electron spins separated by 1.3 km

    Get PDF
    For more than 80 years, the counterintuitive predictions of quantum theory have stimulated debate about the nature of reality. In his seminal work, John Bell proved that no theory of nature that obeys locality and realism can reproduce all the predictions of quantum theory. Bell showed that in any local realist theory the correlations between distant measurements satisfy an inequality and, moreover, that this inequality can be violated according to quantum theory. This provided a recipe for experimental tests of the fundamental principles underlying the laws of nature. In the past decades, numerous ingenious Bell inequality tests have been reported. However, because of experimental limitations, all experiments to date required additional assumptions to obtain a contradiction with local realism, resulting in loopholes. Here we report on a Bell experiment that is free of any such additional assumption and thus directly tests the principles underlying Bell's inequality. We employ an event-ready scheme that enables the generation of high-fidelity entanglement between distant electron spins. Efficient spin readout avoids the fair sampling assumption (detection loophole), while the use of fast random basis selection and readout combined with a spatial separation of 1.3 km ensure the required locality conditions. We perform 245 trials testing the CHSH-Bell inequality S≤2S \leq 2 and find S=2.42±0.20S = 2.42 \pm 0.20. A null hypothesis test yields a probability of p=0.039p = 0.039 that a local-realist model for space-like separated sites produces data with a violation at least as large as observed, even when allowing for memory in the devices. This result rules out large classes of local realist theories, and paves the way for implementing device-independent quantum-secure communication and randomness certification.Comment: Raw data will be made available after publicatio

    R-parity Conservation via the Stueckelberg Mechanism: LHC and Dark Matter Signals

    Get PDF
    We investigate the connection between the conservation of R-parity in supersymmetry and the Stueckelberg mechanism for the mass generation of the B-L vector gauge boson. It is shown that with universal boundary conditions for soft terms of sfermions in each family at the high scale and with the Stueckelberg mechanism for generating mass for the B-L gauge boson present in the theory, electric charge conservation guarantees the conservation of R-parity in the minimal B-L extended supersymmetric standard model. We also discuss non-minimal extensions. This includes extensions where the gauge symmetries arise with an additional U(1)_{B-L} x U(1)_X, where U(1)_X is a hidden sector gauge group. In this case the presence of the additional U(1)_X allows for a Z' gauge boson mass with B-L interactions to lie in the sub-TeV region overcoming the multi-TeV LEP constraints. The possible tests of the models at colliders and in dark matter experiments are analyzed including signals of a low mass Z' resonance and the production of spin zero bosons and their decays into two photons. In this model two types of dark matter candidates emerge which are Majorana and Dirac particles. Predictions are made for a possible simultaneous observation of new physics events in dark matter experiments and at the LHC.Comment: 38 pages, 7 fig
    • …
    corecore