119 research outputs found

    Initial 4D seismic results after CO 2 injection start-up at the Aquistore storage site

    Get PDF
    The first post-CO2-injection 3D time-lapse seismic survey was conducted at the Aquistore CO2 storage site in February 2016 using the same permanent array of buried geophones used for acquisition of three previous pre-CO2-injection surveys from March 2012 to November 2013. By February 2016, 36 kilotons of CO2 have been injected within the reservoir between 3170 and 3370 m depth. We have developed time-lapse results from analysis of the first post-CO2-injection data and three pre-CO2-injection data sets. The objective of our analysis was to evaluate the ability of the permanent array to detect the injected CO2. A “4D-friendly simultaneous” processing flow was applied to the data in an effort to maximize the repeatability between the pre- and post-CO2-injection volumes while optimizing the final subsurface image including the reservoir. Excellent repeatability was achieved among all surveys with global normalized root-mean-square (Gnrms) values of 1.13–1.19 for the raw prestack data relative to the baseline data, which decreased during processing to Gnrms values of approximately 0.10 for the final crossequalized migrated data volumes. A zone of high normalized root-mean-square (nrms) values (0.11–0.25 as compared with background values of 0.05–0.10) is identified within the upper Deadwood unit of the storage reservoir, which likely corresponds to approximately 18 kilotons of CO2. No significant nrms anomalies are observed within the other reservoir units due to a combination of reduced seismic sensitivity, higher background nrms values, and/or small quantities of CO2 residing within these zones

    A cross-over, randomised feasibility study of digitally printed versus hand-painted artificial eyes in adults: PERSONAL-EYE-S - a study protocol

    Get PDF
    ackground/objectives: Around 11,500 artificial eyes are required yearly for new and existing patients. Artificial eyes have been manufactured and hand-painted at the National Artificial Eye Service (NAES) since 1948, in conjunction with approximately 30 local artificial eye services throughout the country. With the current scale of demand, services are under significant pressure. Manufacturing delays as well as necessary repainting to obtain adequate colour matching, may severely impact a patient’s rehabilitation pathway to a normal home, social and work life. However, advances in technology mean alternatives are now possible. The aim of this study is to establish the feasibility of conducting a large-scale study of the effectiveness and cost-effectiveness of digitally printed artificial eyes compared to hand-painted eyes. Methods: A cross-over, randomised feasibility study evaluating a digitally-printed artificial eye with a hand-painted eye, in patients aged ≥18 years with a current artificial eye. Participants will be identified in clinic, via ophthalmology clinic databases and two charity websites. Qualitative interviews will be conducted in the later phases of the study and focus on opinions on trial procedures, the different artificial eyes, delivery times, and patient satisfaction. Discussion: Findings will inform the feasibility, and design, of a larger fully powered randomised controlled trial. The long-term aim is to create a more life-like artificial eye in order to improve patients’ initial rehabilitation pathway, long term quality of life, and service experience. This will allow the transition of research findings into benefit to patients locally in the short term and National Health Service wide in the medium to long term

    Genetic prediction of ICU hospitalization and mortality in COVID-19 patients using artificial neural networks

    Get PDF
    There is an unmet need of models for early prediction of morbidity and mortality of Coronavirus disease-19 (COVID-19). We aimed to a) identify complement-related genetic variants associated with the clinical outcomes of ICU hospitalization and death, b) develop an artificial neural network (ANN) predicting these outcomes and c) validate whether complement-related variants are associated with an impaired complement phenotype. We prospectively recruited consecutive adult patients of Caucasian origin, hospitalized due to COVID-19. Through targeted next-generation sequencing, we identified variants in complement factor H/CFH, CFB, CFH-related, CFD, CD55, C3, C5, CFI, CD46, thrombomodulin/THBD, and A Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS13). Among 381 variants in 133 patients, we identified 5 critical variants associated with severe COVID-19: rs2547438 (C3), rs2250656 (C3), rs1042580 (THBD), rs800292 (CFH) and rs414628 (CFHR1). Using age, gender and presence or absence of each variant, we developed an ANN predicting morbidity and mortality in 89.47% of the examined population. Furthermore, THBD and C3a levels were significantly increased in severe COVID-19 patients and those harbouring relevant variants. Thus, we reveal for the first time an ANN accurately predicting ICU hospitalization and death in COVID-19 patients, based on genetic variants in complement genes, age and gender. Importantly, we confirm that genetic dysregulation is associated with impaired complement phenotype

    Analysis of Different Views and Conceptualizations of the Literacy Practices of Pupils, Families, and Teachers in Costa Rican Primary Education

    Get PDF
    This article is based on a socio-cultural discourse model of literacy, whereby literacy events are regarded as being situated within social practices, creating various formal, informal, and non-formal literacy events that are part of 10multiliteracies. The aim of the research was to analyze primary pupils ’ literacy practices (8–12 years) from the perspectives of 1,354 primary pupils, 1,020 family members, and 96 teachers in Costa Rica, using an ex-post facto design and a survey method. The findings indicate that the three groups of participants (pupils, family members, and teachers) have different views on 15and conceptualizations of literacy practices in school and in the community. The results show that young learners develop their literacy practices according to their different communicative needs inside and outside school. A multimodal literacy is promoted outside school to meet students’ daily communicative needs. However, the school promotes a monomodal lit20eracy, which allows pupils to respond essentially to school needs

    Lobe Specific Ca2+-Calmodulin Nano-Domain in Neuronal Spines: A Single Molecule Level Analysis

    Get PDF
    Calmodulin (CaM) is a ubiquitous Ca2+ buffer and second messenger that affects cellular function as diverse as cardiac excitability, synaptic plasticity, and gene transcription. In CA1 pyramidal neurons, CaM regulates two opposing Ca2+-dependent processes that underlie memory formation: long-term potentiation (LTP) and long-term depression (LTD). Induction of LTP and LTD require activation of Ca2+-CaM-dependent enzymes: Ca2+/CaM-dependent kinase II (CaMKII) and calcineurin, respectively. Yet, it remains unclear as to how Ca2+ and CaM produce these two opposing effects, LTP and LTD. CaM binds 4 Ca2+ ions: two in its N-terminal lobe and two in its C-terminal lobe. Experimental studies have shown that the N- and C-terminal lobes of CaM have different binding kinetics toward Ca2+ and its downstream targets. This may suggest that each lobe of CaM differentially responds to Ca2+ signal patterns. Here, we use a novel event-driven particle-based Monte Carlo simulation and statistical point pattern analysis to explore the spatial and temporal dynamics of lobe-specific Ca2+-CaM interaction at the single molecule level. We show that the N-lobe of CaM, but not the C-lobe, exhibits a nano-scale domain of activation that is highly sensitive to the location of Ca2+ channels, and to the microscopic injection rate of Ca2+ ions. We also demonstrate that Ca2+ saturation takes place via two different pathways depending on the Ca2+ injection rate, one dominated by the N-terminal lobe, and the other one by the C-terminal lobe. Taken together, these results suggest that the two lobes of CaM function as distinct Ca2+ sensors that can differentially transduce Ca2+ influx to downstream targets. We discuss a possible role of the N-terminal lobe-specific Ca2+-CaM nano-domain in CaMKII activation required for the induction of synaptic plasticity

    Building sustainable futures: emerging understandings of the significant contribution of the professional learning community

    Get PDF
    [Abstract]: This article draws on the experiences of a range of Australian schools engaging with a teacher-centred process of whole-school renewal known as IDEAS (Innovative Designs for Enhancing Achievement in Schools). IDEAS enhances the professional capacity of teachers to improve school outcomes such as student learning, relationships with the community, and the coherence of school operation. The article explores how through their engagement with IDEAS, teacher leaders emerge from the professional learning community of the school. After outlining the essential elements of IDEAS, the article explores: how teacher leaders can work collaboratively with administrators to create a contextualized pedagogical framework that transforms their practice; the key concepts of parallel leadership; alignment; and professional conversation. Working with IDEAS, schools create their own futures, supported by their particular pedagogical framework and ways of working. Examples are drawn from particular schools to illustrate the diversity of their experiences and of their learning
    corecore