37 research outputs found

    Magnetic-local-time dependency of radiation belt electron precipitation: impact on ozone in the polar middle atmosphere

    Get PDF
    The radiation belts are regions in the near-Earth space where solar wind electrons are captured by the Earth's magnetic field. A portion of these electrons is continuously lost into the atmosphere where they cause ionization and chemical changes. Driven by the solar activity, the electron forcing leads to ozone variability in the polar stratosphere and mesosphere. Understanding the possible dynamical connections to regional climate is an ongoing research activity which supports the assessment of greenhouse-gas-driven climate change by a better definition of the solar-driven variability. In the context of the Coupled Model Intercomparison Project Phase 6 (CMIP6), energetic electron and proton precipitation is included in the solar-forcing recommendation for the first time. For the radiation belt electrons, the CMIP6 forcing is from a daily zonal-mean proxy model. This zonal-mean model ignores the well-known dependency of precipitation on magnetic local time (MLT), i.e. its diurnal variability. Here we use the Whole Atmosphere Community Climate Model with its lower-ionospheric-chemistry extension (WACCM-D) to study effects of the MLT dependency of electron forcing on the polar-ozone response. We analyse simulations applying MLT-dependent and MLT-independent forcings and contrast the resulting ozone responses in monthly-mean data as well as in monthly means at individual local times. We consider two cases: (1) the year 2003 and (2) an extreme, continuous forcing. Our results indicate that the ozone responses to the MLT-dependent and the MLT-independent forcings are very similar, and the differences found are small compared to those caused by the overall uncertainties related to the representation of electron forcing in climate simulations. We conclude that the use of daily zonal-mean electron forcing will provide an accurate ozone response in long-term climate simulations

    Statistical response of middle atmosphere composition to solar proton events in WACCM-D simulations: the importance of lower ionospheric chemistry

    Get PDF
    Atmospheric effects of solar proton events (SPEs) have been studied for decades, because their drastic impact can be used to test our understanding of upper stratospheric and mesospheric chemistry in the polar cap regions. For example, odd hydrogen and odd nitrogen are produced during SPEs, which leads to depletion of ozone in catalytic reactions, such that the effects are easily observed from satellites during the strongest events. Until recently, the complexity of the ion chemistry in the lower ionosphere (i.e., in the D region) has restricted global models to simplified parameterizations of chemical impacts induced by energetic particle precipitation (EPP). Because of this restriction, global models have been unable to correctly reproduce some important effects, such as the increase in mesospheric HNO3 or the changes in chlorine species. Here we use simulations from the WACCM-D model, a variant of the Whole Atmosphere Community Climate Model, to study the statistical response of the atmosphere to the 66 strongest SPEs which occurred in the years 1989–2012. Our model includes a set of D-region ion chemistry, designed for a detailed representation of the atmospheric effects of SPEs and EPP in general. We use superposed epoch analysis to study changes in O3, HOx (OH + HO2), Clx (Cl + ClO), HNO3, NOx (NO + NO2) and H2O. Compared to the standard WACCM which uses an ion chemistry parameterization, WACCM-D produces a larger response in O3 and NOx and a weaker response in HOx and introduces changes in HNO3 and Clx. These differences between WACCM and WACCM-D highlight the importance of including ion chemistry reactions in models used to study EPP

    Harmonized Dataset of Ozone Profiles from Satellite Limb and Occultation Measurements

    Get PDF
    In this paper, we present a HARMonized dataset of OZone profiles (HARMOZ) based on limb and occultation measurements from Envisat (GOMOS, MIPAS and SCIAMACHY), Odin (OSIRIS, SMR) and SCISAT (ACE-FTS) satellite instruments. These measurements provide high-vertical-resolution ozone profiles covering the altitude range from the upper troposphere up to the mesosphere in years 2001-2012. HARMOZ has been created in the framework of the European Space Agency Climate Change Initiative project. The harmonized dataset consists of original retrieved ozone profiles from each instrument, which are screened for invalid data by the instrument teams. While the original ozone profiles are presented in different units and on different vertical grids, the harmonized dataset is given on a common pressure grid in netCDF (network common data form)-4 format. The pressure grid corresponds to vertical sampling of similar to 1 km below 20 km and 2-3 km above 20 km. The vertical range of the ozone profiles is specific for each instrument, thus all information contained in the original data is preserved. Provided altitude and temperature profiles allow the representation of ozone profiles in number density or mixing ratio on a pressure or altitude vertical grid. Geolocation, uncertainty estimates and vertical resolution are provided for each profile. For each instrument, optional parameters, which are related to the data quality, are also included. For convenience of users, tables of biases between each pair of instruments for each month, as well as bias uncertainties, are provided. These tables characterize the data consistency and can be used in various bias and drift analyses, which are needed, for instance, for combining several datasets to obtain a long-term climate dataset. This user-friendly dataset can be interesting and useful for various analyses and applications, such as data merging, data validation, assimilation and scientific research. The dataset is available at http://www.esa-ozone-cci.org/?q=node/161 or at doi: 10.5270/esa-ozone_cci-limb_occultation_profiles-2001_2012-v_1-201308

    Validation of satellite-based noontime UVI with NDACC ground-based instruments: influence of topography, environment and satellite overpass time

    Get PDF
    Spectral solar UV radiation measurements are performed in France using three spectroradiometers located at very different sites. One is installed in Villeneuve d'Ascq, in the north of France (VDA). It is an urban site in a topographically flat region. Another instrument is installed in Observatoire de Haute-Provence, located in the southern French Alps (OHP). It is a rural mountainous site. The third instrument is installed in Saint-Denis, RĂ©union Island (SDR). It is a coastal urban site on a small mountainous island in the southern tropics. The three instruments are affiliated with the Network for the Detection of Atmospheric Composition Change (NDACC) and carry out routine measurements to monitor the spectral solar UV radiation and enable derivation of UV index (UVI). The ground-based UVI values observed at solar noon are compared to similar quantities derived from the Ozone Monitoring Instrument (OMI, onboard the Aura satellite) and the second Global Ozone Monitoring Experiment (GOME-2, onboard the Metop-A satellite) measurements for validation of these satellite-based products. The present study concerns the period 2009–September 2012, date of the implementation of a new OMI processing tool. The new version (v1.3) introduces a correction for absorbing aerosols that were not considered in the old version (v1.2). Both versions of the OMI UVI products were available before September 2012 and are used to assess the improvement of the new processing tool. On average, estimates from satellite instruments always overestimate surface UVI at solar noon. Under cloudless conditions, the satellite-derived estimates of UVI compare satisfactorily with ground-based data: the median relative bias is less than 8 % at VDA and 4 % at SDR for both OMI v1.3 and GOME-2, and about 6 % for OMI v1.3 and 2 % for GOME-2 at OHP. The correlation between satellite-based and ground-based data is better at VDA and OHP (about 0.99) than at SDR (0.96) for both space-borne instruments. For all sky conditions, the median relative biases are much larger, with large dispersion for both instruments at all sites (VDA: about 12 %; OHP: 9 %; SDR: 11 %). Correlation between satellite-based and ground-based data is still better at VDA and OHP (about 0.95) than at SDR (about 0.73) for both satellite instruments. These results are explained considering the time of overpass of the two satellites, which is far from solar noon, preventing a good estimation of the cloud cover necessary for a good modelling of the UVI. Site topography and environment are shown to have a non-significant influence. At VDA and OHP, OMI v1.3 shows a significant improvement with respect to v1.2, which did not account for absorbing aerosols

    Validation of the TROPOspheric Monitoring Instrument (TROPOMI) surface UV radiation product

    Get PDF
    The TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor (S5P) satellite was launched on 13 October 2017 to provide the atmospheric composition for atmosphere and climate research. The S5P is a Sun-synchronous polar-orbiting satellite providing global daily coverage. The TROPOMI swath is 2600 km wide, and the ground resolution for most data products is 7:23:5 km2 (5:63:5 km2 since 6 August 2019) at nadir. The Finnish Meteorological Institute (FMI) is responsible for the development of the TROPOMI UV algorithm and the processing of the TROPOMI surface ultraviolet (UV) radiation product which includes 36 UV parameters in total. Ground-based data from 25 sites located in arctic, subarctic, temperate, equatorial and Antarctic areas were used for validation of the TROPOMI overpass irradiance at 305, 310, 324 and 380 nm, overpass erythemally weighted dose rate/UV index, and erythemally weighted daily dose for the period from 1 January 2018 to 31 August 2019. The validation results showed that for most sites 60 % 80% of TROPOMI data was within 20% of ground-based data for snow-free surface conditions. The median relative differences to ground-based measurements of TROPOMI snow-free surface daily doses were within 10% and 5% at two-Thirds and at half of the sites, respectively. At several sites more than 90% of cloud-free TROPOMI data was within 20% of groundbased measurements. Generally median relative differences between TROPOMI data and ground-based measurements were a little biased towards negative values (i.e. satellite data ground-based measurement), but at high latitudes where non-homogeneous topography and albedo or snow conditions occurred, the negative bias was exceptionally high: from 30% to 65 %. Positive biases of 10 % 15% were also found for mountainous sites due to challenging topography. The TROPOMI surface UV radiation product includes quality flags to detect increased uncertainties in the data due to heterogeneous surface albedo and rough terrain, which can be used to filter the data retrieved under challenging conditions

    Operational surface UV radiation product from GOME-2 and AVHRR/3 data

    No full text
    The surface ultraviolet (UV) radiation product, version 1.20, generated operationally in the framework of the Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M SAF) of the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) is described. The product is based on the total ozone column derived from the measurements of the second Global Ozone Monitoring Experiment (GOME-2) instrument aboard EUMETSAT's polar orbiting meteorological operational (Metop) satellites. Cloud cover is taken into account by retrieving cloud optical depth from the channel 1 reflectance of the third Advanced Very High-Resolution Radiometer (AVHRR/3) instrument aboard both Metop in the morning orbit and Polar Orbiting Environmental Satellites (POES) of the National Oceanic and Atmospheric Administration (NOAA) in the afternoon orbit. In addition, more overpasses are used at high latitudes where the swaths of consecutive orbits overlap. The input satellite data are received from EUMETSAT's Multicast Distribution System (EUMETCast). The surface UV product includes daily maximum dose rates and integrated daily doses with different biological weighting functions, integrated ultraviolet B (UVB) and ultraviolet A (UVA) radiation, solar noon UV index and daily maximum photolysis frequencies of ozone and nitrogen dioxide at the surface level. The quantities are computed in a 0.5°×0.5° regular latitude–longitude grid and stored as daily files in the hierarchical data format (HDF5) within 2 weeks from sensing. The product files are archived in the O3M SAF distributed archive and can be ordered via the EUMETSAT Data Centre

    Comparison of GOME-2/Metop total column water vapour with ground-based and in situ measurements

    Get PDF
    Total column water vapour product from the Global Ozone Monitoring Experiment-2 on board Metop-A and Metop-B satellites (GOME-2/Metop-A and GOME-2/Metop-B) produced by the Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M SAF) is compared with co-located radiosonde and Global Positioning System (GPS) observations. The comparisons are performed using recently reprocessed data by the GOME Data Processor (GDP) version 4.7. The comparisons are performed for the period of January 2007–July 2013 (GOME-2A) and from December 2012 to July 2013 (GOME-2B). Radiosonde data are from the Integrated Global Radiosonde Archive (IGRA) maintained by National Climatic Data Center (NCDC) and screened for soundings with incomplete tropospheric column. Ground-based GPS observations from COSMIC/SuomiNet network are used as the second independent data source. Good general agreement between GOME-2 and the ground-based observations is found. The median relative difference of GOME-2 to radiosonde observations is −2.7% for GOME-2A and −0.3% for GOME-2B. Against GPS observations, the median relative differences are 4.9 and 3.2% for GOME-2A and B, respectively. For water vapour total columns below 10 kg m−2, large wet biases are observed, especially against GPS observations. Conversely, at values above 50 kg m−2, GOME-2 generally underestimates both ground-based observations

    Ozone zonal asymmetry and planetary wave characterization during Antarctic spring

    No full text
    A large zonal asymmetry of ozone has been observed over Antarctica during winter-spring, when the ozone hole develops. It is caused by a planetary wave-driven displacement of the polar vortex. The total ozone data by OMI (Ozone Monitoring Instrument) and the ozone profiles by MLS (Microwave Limb Sounder) and GOMOS (Global Ozone Monitoring by Occultation of Stars) were analysed to characterize the ozone zonal asymmetry and the wave activity during Antarctic spring. Both total ozone and profile data have shown a persistent zonal asymmetry over the last years, which is usually observed from September to mid-December. The largest amplitudes of planetary waves at 65° S (the perturbations can achieve up to 50% of zonal mean values) is observed in October. The wave activity is dominated by the quasi-stationary wave 1 component, while the wave 2 is mainly an eastward travelling wave. Wave numbers 1 and 2 generally explain more than the 90% of the ozone longitudinal variations. Both GOMOS and MLS ozone profile data show that ozone zonal asymmetry covers the whole stratosphere and extends up to the altitudes of 60–65 km. The wave amplitudes in ozone mixing ratio decay with altitude, with maxima (up to 50%) below 30 km. <br><br> The characterization of the ozone zonal asymmetry has become important in the climate research. The inclusion of the polar zonal asymmetry in the climate models is essential for an accurate estimation of the future temperature trends. This information might also be important for retrieval algorithms that rely on ozone a priori information
    corecore