18 research outputs found

    Phytofabrication of Selenium Nanoparticles From Emblica officinalis Fruit Extract and Exploring Its Biopotential Applications: Antioxidant, Antimicrobial, and Biocompatibility

    Get PDF
    In the present study, phytofabricated selenium nanoparticles (PF-SeNPs) were prepared from aqueous fruit extract of Emblica officinalis in a facile, green, economic, tactic and eco-friendly way. The aqueous fruit extract of E. officinalis was found to be rich with various secondary metabolites including phenolics (59.18 ± 2.91 mg gallic acid equivalents/g), flavonoids (38.50 ± 2.84 mg catechin equivalents/g), and tannins (44.28 ± 3.09 mg tannic acid equivalents/g) and determined that highly appropriate for the biosynthesis of nanoparticles. The facile phytofabrication of PF-SeNPs was confirmed by UV-visible and FTIR spectroscopic analysis. The XRD pattern and Raman spectroscopy showed that synthesized PF-SeNPs were amorphous in nature. The Zeta potential analysis confirmed that PF-SeNPs were negatively charged (-24.4 mV). The DLS analysis revealed that PF-SeNPs were in nano size and less aggregated with poly-dispersity index of less than 0.2. The SEM images depicted that PF-SeNPs were spherical in shape. The EDX analysis revealed that PF-SeNPs were constituted with Se (61.60%), C (29.96%), and O (4.41%). The HR-TEM analysis determined that PF-SeNPs were in nano size with an average diameter of 15–40 nm. The PF-SeNPs have offered fascinating bio-potential applications, such as antioxidant, antimicrobial and biocompatibility. They have also exhibited dose-dependent free radical scavenging activity, and EC50 was determined as 15.67 ± 1.41 and 18.84 ± 1.02 μg/mL for DPPH and ABTS assays, respectively. The PF-SeNPs has also shown the wide range of antimicrobial activity on foodborne pathogens, and it was found to be highly efficient on fungi followed by Gram-positive and Gram-negative bacteria. The biocompatibility of PF-SeNPs was assessed in N2a cells with much higher IC50 value (dose required to inhibit 50% of cell viability) compared to sodium selenite. Also, mitochondrial membrane potential (MMP) and caspase-3 were much less altered on treatment of PF-SeNPs related to sodium selenite. The cytotoxic studies clearly determined that PF-SeNPs was much less toxic and safer related to sodium selenite. Thus, PF-SeNPs could find suitable application as antioxidant and antimicrobial agent in food, biomedical, and pharmaceutical industry

    Isolation, structure elucidation and bioactivity of secondary metabolites produced by marine derived Streptomonospora arabica VSM-25

    Get PDF
    73-93The strain VSM-25 with an exhilarating bioactive potential isolated during our systematic screening of marine actinomycetes was identified as Streptomonospora arabica based on polyphasic taxonomy. The ethyl acetate extract of culture filtrate was purified by silica gel column chromatography. The chemical structure of active compounds was determined by NMR, FTIR, and ESIMS and were established as Indole-3-carboxaldehyde (C1), 2, 3-dihydroxy benzoic acid (C2), Vanillic acid (C3), Daidzein (C4), and 3, 4-Dihydroxy benzaldehyde (C5). The antimicrobial activities of the compounds were tested against medicinally and agriculturally significant bacteria and fungi. C1 displayed a high inhibitory effect against bacteria and fungi to that of the other compounds tested. C5 exerted the strongest scavenging activity of free radicals such as DPPH and NO at a concentration of 400 μg/mL. C1 inhibited alpha-amylase effectively at 400 μg/mL although it was less potent than acarbose. C3 and C4 exerted significant anti-inflammatory and anti-arthritic activities at 400 μg/mL. The anti-inflammatory activity of compound C3 was found to be more potent than Diclofenac sodium, the reference drug. MTT assays of five compounds against MDA-MB-231 and MCF-7 cell lines using taxol as standard documented cytotoxicity. C4 showed highest activity of 67.81% and 54.33% (IC50 -1 μg/mL) against MDA-MB-231 and MCF-7. The cytotoxicity of five compounds was also evaluated by soft agar colony forming assay to determine the ability of MDA-MB-231 cells to proliferate while cell cycle arrest at sub G1 and induction of apoptosis was documented with MDA-MB-231 cells after treatment with C1, C2, C3, C4, and C5

    Assessment of Detoxification Efficacy of Irradiation on Zearalenone Mycotoxin in Various Fruit Juices by Response Surface Methodology and Elucidation of Its in-vitro Toxicity

    Get PDF
    Fruits are vital portion of healthy diet owed to rich source of vitamins, minerals, and dietary fibers, which are highly favorable in keeping individual fit. Unfortunately, these days, one-third of fruits were infested with fungi and their toxic metabolites called mycotoxins, which is most annoying and pose significant health risk. Therefore, there is a need to suggest appropriate mitigation strategies to overcome the mycotoxins contamination in fruits. In the present study, detoxification efficiency of irradiation on zearalenone (ZEA) mycotoxin was investigated in distilled water and fruit juices (orange, pineapple, and tomato) applying statistical program response surface methodology (RSM). The independent factors were distinct doses of irradiation and ZEA, and response factor was a percentage of ZEA reduction in content. A central composite design (CCD) consists of 13 experiments were planned applying software program Design expert with distinct doses of irradiation (up to 10 kGy) and ZEA (1–5 μg). The results revealed that independent factors had a positive significant effect on the response factor. The analysis of variance (ANOVA) was followed to fit a proper statistical model and suggested that quadratic model was appropriate. The optimized model concluded that doses of irradiation and ZEA were the determinant factors for detoxification of ZEA in fruit juices. Further, toxicological safety of irradiation mediated detoxified ZEA was assessed in the cell line model by determining the cell viability (MTT and live/dead cell assays), intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), nuclear damage, and caspase-3 activity. The higher level of live cells and MMP, lower extent of intracellular ROS molecules and caspase-3, and intact nuclear material were noticed in cells treated with irradiation mediated detoxified ZEA related to non-detoxified ZEA. The results confirmed that toxicity of ZEA was decreased with irradiation treatment and detoxification of ZEA by irradiation is safe. The study concluded that irradiation could be a potential post-harvest food processing technique for detoxification of ZEA mycotoxin in fruit juices. However, irradiation of fruit juices with high dose of 10 kGy has minimally altered the quality of fruit juices

    Anticancer potential of Solanum lycopersicum L. extract in human lung epithelial cancer cells A549

    Get PDF
    The study aimed to reveal the phytochemical profile, free radical scavenging potential, and anticancer activity of Solanum lycopersicum L. leaf extract (SLLE). According to the study, SLLE contains plant secondary metabolites that are beneficial for health, like phenolics, flavonoids, ascorbic acid, alkaloids, and terpenoids. The SLLE has shown potential free radical scavenging potential in DPPH and ABTS free radical scavenging analysis and its EC50 values (concentration required to inhibit 50% of free radicals) were determined as 481.29 ± 33.82 and 527.56 ± 20.34 µg/mL, respectively. The SLLE has the ability to scavenge free radicals and could be used to treat illnesses brought on by oxidative stress. The anticancer activity of SLLE was assessed by MTT, LDH, micro-morphological, live/dead dual staining, and caspase-3 analysis. In the MTT assay, the IC50 value (concentration required to inhibit 50% of cell viability) of SLLE was determined as 190.41 ± 4.77 µg/mL. Furthermore, SLLE has shown potential anticancer activity by adversely affecting the plasma membrane integrity and escalating the caspase-3 levels. In the biomedical field, SLLE could be highly useful to treat cancer

    Application of Syzygium aromaticum, Ocimum sanctum, and Cananga odorata essential oils for management of Ochratoxin A content by Aspergillus ochraceus and Penicillium verrucosum: An in vitro assessment in maize grains

    Get PDF
    172-182The study is directed to establish the minimizing effects of Syzygium aromaticum, Ocimum sanctum, and Cananga odorata essential oils on the growth and ochratoxin A (OTA) level of Aspergillus ochraceus and Penicillium verrucosum in maize grains. S. aromaticum essential oil (SAEO), O. sanctum essential oil (OSEO), and C. odorata essential oil (COEO) were extracted by hydro-distillation technique, and a total of 50, 44, and 48 chemical constituents were identified by gas chromatography-mass spectrometry (GC-MS), respectively.The SAEO and OSEO belong to the chemotype of eugenol, whereas, COEO was found to be the chemotype of thymol, limonene, and α-ylangene. The antifungal activity of essential oils (EOs) was determined by the micro-well dilution technique. The SAEO showed superior antifungal activity compared to OSEO, COEO, and synthetic antifungal agent nystatin, and its minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values against A. ochraceous and P. verrucosum were noticed as 1251 ± 42.32 and 1878 ± 28.47 μg/mL, and 0815 ± 22.69 and 1146 ± 51.19 μg/mL, respectively.The antifungal mechanism of EOs was unveiled by assessing the intracellular reactive oxygen species (ROS), ergosterol content, and membrane integrity. The antifungal investigations found that EOs caused fungal mortality by increasing the intracellular ROS, depleting ergosterol synthesis, and distracting membrane integrity. Finally, antifungal and antimycotoxin activity of EOs was demonstrated in maize grains. The SAEO, OSEO, and COEO have reduced the complete fungal growth and OTA level of A. ochraceous and P.verrucosum correspondingly at 2500 and 2500, 3500 and 2500, and 3500 and 3500 μg/g in maize. The EOs could act asnatural antifungal agents; protect foodstuffs from fungal infection and mycotoxins during storage

    Biomimetic of hydroxyapatite with Tridax procumbens leaf extract and investigation of antibiofilm potential in Staphylococcus aureus and Escherichia coli

    Get PDF
    In the last few decades, hydroxyapatite (HA) has become one of the most highly prized biominerals in the biomedical industry for orthopedic and dental applications. The focus of this research was to synthesize biomimetic HA from Tridax procumbens (TP) leaf extract and investigate their antibiofilm properties. The HA was made using the sol-gel method and the HA-TP biocomposite was made by precipitation method. The d.nm size of HA and HA-TP biocomposite was determined as 193.28 and 258.14 d.nm, respectively. The zeta potential of HA and HA-TP biocomposite was determined as −21.2 and −18.3 mV, respectively, and found highly stable. The FTIR study revealed that phytochemicals of TP were successfully impregnated into HA-TP biocomposite. The HA and HA-TP biocomposite were found spherical and agglomerated from SEM analysis. In HR-TEM analysis, the average diameter of the HA and HA-TP biocomposite were 16.57 – 64.22 nm and 51.71 – 138.68 nm, respectively. According to the EDX analysis, HA is primarily composed of calcium, oxygen, and phosphate, whereas, HA-TP biocomposite is primarily composed of calcium, phosphate, oxygen, and carbon. In the antioxidant assay, the IC50 value (concentration required to scavenge 50% of free radicals) of HA-TP biocomposite was determined as 156.69 ± 14.02 and 180.21 ± 12.84 µg/mL in DPPH and ABTS free radical scavenging assays, respectively. The MIC (minimum inhibitory concentration) and MBC (minimum bactericidal concentration) of as-synthesized HA-TP biocomposite against Staphylococcus aureus – ATCC 13565 and Escherichia coli – MTCC 41 were observed as 181.09 ± 21.47 and 317.30 ± 41.03, and 157.59 ± 32.18 and 264.03 ± 21.58 µg/mL, respectively. The as-synthesized HA-TP biocomposite has detrimentally affected the biofilm formation of both the tested bacteria S. aureus – ATCC 13565 and E. coli – MTCC 41. The study concluded that the as-synthesized HA-TP biocomposite could be highly helpful in the biomedical field for alleviating oxidative-stress-related disorders and inhibiting microbial biofilm formation

    Hibiscus tiliaceus mediated phytochemical reduction of zinc oxide nanoparticles and demonstration of their antibacterial, anticancer, and dye degradation capabilities

    Get PDF
    565-574The present research focused on the green, non-toxic, low-cost synthesis of zinc oxide nanoparticles (ZnO NPs) using aqueous extract of Hibiscus tiliaceus leaves as a reducing and stabilizing agent. Thus, synthesized ZnO NPs were characterized by nanotechnological applications, i.e., ultraviolet-visible spectroscopy (UV-vis), dynamic light scattering (DLS), zeta potential, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and high-resolution transmission electron microscopy (HR-TEM). The nanotechnological applications showed that as-synthesized ZnO NPs have bandgap energy of 2.97 eV, zeta potential of 1.2 mV, crystalline in nature (JCPDS data card no-89-1397), and an average size of 30 to 60 nm. The FTIR showed that ZnO NPs have coated with plant secondary metabolites and assisted in the process of green synthesis. The ZnO NPs exhibited broad-spectrum antibacterial activity on Gram-positive and Gramnegative bacteria. The ZnO NPs showed potential anticancer activity against human breast cancer cells MCF-7 and determined the IC50 value as 65.83 ± 2.57 μg/mL by MTT assay. Furthermore, ZnO NPs were used as nano-catalyst for dye degradation of methylene blue, methyl orange, and malachite green with NABH4 as a reducing agent. The ZnO NPs exhibited potent dye degradation capability and followed pseudo-first order kinetics. The study concluded that ZnO NPs could be highly useful as anticancer and antibacterial agents in the biomedical field, and as an environmental cleaning agent for dye degradation in textile industries

    Isolation, structure elucidation and bioactivity of secondary metabolites produced by marine derived Streptomonospora arabica VSM-25

    Get PDF
    The strain VSM-25 with an exhilarating bioactive potential isolated during our systematic screening of marine actinomycetes was identified as Streptomonospora arabica based on polyphasic taxonomy. The ethyl acetate extract of culture filtrate was purified by silica gel column chromatography. The chemical structure of active compounds was determined by NMR, FTIR, and ESIMS and were established as Indole-3-carboxaldehyde (C1), 2, 3-dihydroxy benzoic acid (C2), Vanillic acid (C3), Daidzein (C4), and 3, 4-Dihydroxy benzaldehyde (C5). The antimicrobial activities of the compounds were tested against medicinally and agriculturally significant bacteria and fungi. C1 displayed a high inhibitory effect against bacteria and fungi to that of the other compounds tested. C5 exerted the strongest scavenging activity of free radicals such as DPPH and NO at a concentration of 400 µg/mL. C1 inhibited alpha-amylase effectively at 400 µg/mL although it was less potent than acarbose. C3 and C4 exerted significant anti-inflammatory and anti-arthritic activities at 400 µg/mL. The anti-inflammatory activity of compound C3 was found to be more potent than Diclofenac sodium, the reference drug. MTT assays of five compounds against MDA-MB-231 and MCF-7 cell lines using taxol as standard documented cytotoxicity. C4 showed highest activity of 67.81% and 54.33% (IC50 -1 µg/mL) against MDA-MB-231 and MCF-7. The cytotoxicity of five compounds was also evaluated by soft agar colony forming assay to determine the ability of MDA-MB-231 cells to proliferate while cell cycle arrest at sub G1 and induction of apoptosis was documented with MDA-MB-231 cells after treatment with C1, C2, C3, C4, and C5

    Discrete and combined effects of Ylang-Ylang (Cananga odorata) essential oil and gamma irradiation on growth and mycotoxins production by Fusarium graminearum in maize

    No full text
    In the present study, discrete and combined inhibitory effects of Cananga odorata essential oil (COEO) and irradiation were established on growth and production of deoxynivalenol (DON) and zearalenone (ZEA) by Fusarium graminearum in maize kernels. Chemical profile of COEO was characterized by GC-MS and a total of 35 chemical constituents were identified, and major compounds were linalool (29.15), germacrene-D (11.82), and thymol (8.45). The COEO and irradiation have inhibited the fungal growth and mycotoxins at 3.9 mg/g and 7.5 kGy, respectively. Distinct inhibitory activity of COEO and irradiation on fungal growth and mycotoxins was assessed by constructing linear regression curves. Regression models of COEO and irradiation have presented good coefficients of determination (R2) of 0.9886 and 0.9798 for fungal growth (log CFU), 0.97 and 0.9622 for DON, and 0.9811 and 0.9807 for ZEA, respectively. The linear regression models concluded that COEO and irradiation have dose-dependent inhibitory effect on fungal growth and mycotoxins. Further, combined inhibitory effect of COEO and irradiation on fungal growth and mycotoxins was assessed by checkerboard method. The combined treatment of COEO and irradiation was too shown decent coefficients of determination (R2) and found greatly effective. The combined treatments of COEO and irradiation have inhibited the fungal growth and mycotoxins in stored maize kernels much below than their discrete inhibitory levels, and it was noticed at 2.5 mg/g of COEO and 4 kGy of irradiation. The study concluded that combination of essential oil and irradiation could be highly efficient decontamination technique to diminish the fungal growth and mycotoxins in agricultural commodities

    Anticancer potential of Solanum lycopersicum L. extract in human lung epithelial cancer cells A549

    No full text
    76-85The study aimed to reveal the phytochemical profile, free radical scavenging potential, and anticancer activity of Solanum lycopersicum L. leaf extract (SLLE). According to the study, SLLE contains plant secondary metabolites that are beneficial for health, like phenolics, flavonoids, ascorbic acid, alkaloids, and terpenoids. The SLLE has shown potential free radical scavenging potential in DPPH and ABTS free radical scavenging analysis and its EC50 values (concentration required to inhibit 50% of free radicals) were determined as 481.29 ± 33.82 and 527.56 ± 20.34 μg/mL, respectively. The SLLE has the ability to scavenge free radicals and could be used to treat illnesses brought on by oxidative stress. The anticancer activity of SLLE was assessed by MTT, LDH, micro-morphological, live/dead dual staining, and caspase-3 analysis. In the MTT assay, the IC50 value (concentration required to inhibit 50% of cell viability) of SLLE was determined as 190.41 ± 4.77 μg/mL. Furthermore, SLLE has shown potential anticancer activity by adversely affecting the plasma membrane integrity and escalating the caspase-3 levels. In the biomedical field, SLLE could be highly useful to treat cancer
    corecore