32 research outputs found

    Immune response to enzyme replacement therapy in MPS I and GSD II patients / Revecca Kakavanos.

    Get PDF
    "February, 2006"Addendum attached to back page.Bibliography: leaves 173-206.xii, 206 leaves : ill. (chiefly col.), plates, photographs (chiefly col.) ; 30 cm.Thesis (Ph.D.)--University of Adelaide, School of Paediatrics and Reproductive Health, Discipline of Paediatrics, 200

    Immune tolerance to long-term laronidase in MPS-I

    No full text

    Significance of immune response to enzyme-replacement therapy for patients with a lysosomal storage disorder

    No full text
    Lysosomal storage disorders are collectively important because they cause significant morbidity and mortality. Patients can present with severe symptoms that include somatic tissue and bone pathology, developmental delay and neurological impairment. Enzyme-replacement therapy has been developed as a treatment strategy for patients with a lysosomal storage disorder, and for many of these disorders this treatment is either in clinical trial or clinical practice. One major complication arising from enzyme infusion into patients with a lysosomal storage disorder is an immune response to the replacement protein. From clinical trials, it is clear that there is considerable variability in the level of immune response to enzyme-replacement therapy, dependent upon the replacement protein being infused and the individual patient. Hypersensitivity reactions, neutralizing antibodies to the replacement protein and altered enzyme targeting or turnover are potential concerns for patients exhibiting an immune response to enzyme-replacement therapy. The relative occurrence and significance of these issues have been appraised

    Immune tolerance after long-term enzyme-replacement therapy among patients who have mucopolysaccharidosis I

    No full text
    BACKGROUND: Enzyme-replacement therapy has been assessed as a treatment for patients who have mucopolysaccharidosis I (alpha-L-iduronidase deficiency). We aimed to investigate the humoral immune response to recombinant human alpha-L-iduronidase among these patients. METHODS: We characterised the antibody titres and specific linear sequence epitope reactivity of serum antibodies to alpha-L-iduronidase for ten patients with mucopolysaccharidosis I, at the start of treatment and after 6, 12, 26, 52, and 104 weeks. We compared the values for patients' samples with those for samples from normal human controls. FINDINGS: Before enzyme-replacement therapy, all patients had low serum antibody titres to recombinant human alpha-L-iduronidase that were within the control range. Five of the ten patients produced higher-than-normal titres of antibody to the replacement protein during the treatment course (serum antibody titres 130000-500000 and high-affinity epitope reactivity). However, by week 26, antibody reactivity was reduced, and by week 104 all patients had low antibody titres and only low-affinity epitope reactivity. Patients who had mucopolysaccharidosis I with antibody titres within the normal range at 6-12 weeks did not subsequently develop immune responses. INTERPRETATION: After 2 years of treatment, patients who initially had an immune reaction developed immune tolerance to alpha-L-iduronidase. This finding has positive implications for long-term enzyme-replacement therapy in patients who have mucopolysaccharidosis I

    Common antigenicity for two glycosidases

    Get PDF
    Copyright © 2005 Federation of European Biochemical Societies Published by Elsevier B.V.Enzyme replacement therapy (ERT) has proven to be an effective therapy for some lysosomal storage disorder (LSD) patients. A potential complication during ERT is the generation of an immune response against the replacement protein. We have investigated the antigenicity of two distantly related glycosidases, alpha-glucosidase (Pompe disease or glycogen storage disease type II, GSD II), and alpha-L-iduronidase (Hurler syndrome, mucopolysaccharidosis type I, MPS I). The linear sequence epitope reactivity of affinity purified polyclonal antibodies to recombinant human alpha-glucosidase and alpha-L-iduronidase was defined, to both glycosidases. The polyclonal antibodies exhibited some cross-reactive epitopes on the two proteins. Moreover, a monoclonal antibody to the active site of alpha-glucosidase showed cross-reactivity with a catalytic structural element of alpha-L-iduronidase. In a previous study, in MPS I patients who developed an immune response to ERT, this same site on alpha-L-iduronidase was highly antigenic and the last to tolerise following repeated enzyme infusions. We conclude that glycosidases can exhibit cross-reactive epitopes, and infer that this may relate to common structural elements associated with their active sites.Revecca Kakavanos, Pierre Lehn, Isabelle Callebaut, Peter J. Meikle, Emma J. Parkinson-Lawrence, John J. Hopwood and Doug A. Brookshttp://www.elsevier.com/wps/find/journaldescription.cws_home/506085/description#descriptio

    Identification and molecular characterization of alpha-L-iduronidase mutations present in mucopolysaccharidosis type I patients undergoing enzyme replacement therapy

    No full text
    Mucopolysaccharidosis type I (MPS I) is an autosomal recessive lysosomal storage disorder caused by a deficiency of alpha-L-iduronidase (IDUA). Mutations in the gene are responsible for the enzyme deficiency, which leads to the intralysosomal storage of the partially degraded glycosaminoglycans dermatan sulfate and heparan sulfate. Molecular characterization of MPS I patients has resulted in the identification of over 70 distinct mutations in the IDUA gene. The high degree of molecular heterogeneity reflects the wide clinical variability observed in MPS I patients. Six novel mutations, c.1087C>T (p.R363C), c.1804T>A (p.F602I), c.793G>C, c.712T>A (p.L238Q), c.1727+2T>A, and c.1269C>G (p.S423R), in a total of 14 different mutations, and 13 different polymorphic changes, including the novel c.246C>G (p.H82Q), were identified in a cohort of 10 MPS I patients enrolled in a clinical trial of enzyme-replacement therapy. Five novel amino acid substitutions and c.236C>T (p.A79V) were engineered into the wild-type IDUA cDNA and expressed. A p.G265R read-through mutation, arising from the c.793G>C splice mutation, was also expressed. Each mutation reduced IDUA protein and activity levels to varying degrees with the processing of many of the mutant forms also affected by IDUA. The varied properties of the expressed mutant forms of IDUA reflect the broad range of biochemical and clinical phenotypes of the 10 patients in this study. IDUA kinetic data derived from each patient's cultured fibroblasts, in combination with genotype data, was used to predict disease severity. Finally, residual IDUA protein concentration in cultured fibroblasts showed a weak correlation to the degree of immune response to enzyme-replacement therapy in each patient
    corecore