195 research outputs found
Identification of mixed-symmetry states in an odd-mass nearly-spherical nucleus
The low-spin structure of 93Nb has been studied using the (n,n' gamma)
reaction at neutron energies ranging from 1.5 to 3.0 MeV and the 94Zr(p,2n
gamma)93Nb reaction at bombarding energies from 11.5 to 19 MeV. States at
1779.7 and 1840.6 keV, respectively, are proposed as mixed-symmetry states
associated with the coupling of a proton hole in the p_1/2 orbit to the 2+_1,ms
state in 94Mo. These assignments are derived from the observed M1 and E2
transition strengths to the symmetric one-phonon states, energy systematics,
spins and parities, and comparison with shell model calculations.Comment: 5 pages, 3 figure
Development of quality metrics for ambulatory pediatric cardiology: Chest pain
ObjectiveAs part of the American College of Cardiology Adult Congenital and Pediatric Cardiology Section effort to develop quality metrics (QMs) for ambulatory pediatric practice, the chest pain subcommittee aimed to develop QMs for evaluation of chest pain.DesignA group of 8 pediatric cardiologists formulated candidate QMs in the areas of history, physical examination, and testing. Consensus candidate QMs were submitted to an expert panel for scoring by the RAND‐UCLA modified Delphi process. Recommended QMs were then available for open comments from all members.PatientsThese QMs are intended for use in patients 5–18 years old, referred for initial evaluation of chest pain in an ambulatory pediatric cardiology clinic, with no known history of pediatric or congenital heart disease.ResultsA total of 10 candidate QMs were submitted; 2 were rejected by the expert panel, and 5 were removed after the open comment period. The 3 approved QMs included: (1) documentation of family history of cardiomyopathy, early coronary artery disease or sudden death, (2) performance of electrocardiogram in all patients, and (3) performance of an echocardiogram to evaluate coronary arteries in patients with exertional chest pain.ConclusionsDespite practice variation and limited prospective data, 3 QMs were approved, with measurable data points which may be extracted from the medical record. However, further prospective studies are necessary to define practice guidelines and to develop appropriate use criteria in this population.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140026/1/chd12509.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/140026/2/chd12509_am.pd
Cardiovascular Complications of COVID-19: Pharmacotherapy Perspective
Coronavirus disease of 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is spreading rapidly the world over. The disease was declared �pandemic� by the World Health Organization. An approved therapy for patients with COVID-19 has yet to emerge; however, there are some medications used in the treatment of SARS-CoV-2 infection globally including hydroxychloroquine, remdesivir, dexamethasone, protease inhibitors, and anti-inflammatory agents. Patients with underlying cardiovascular disease are at increased risk of mortality and morbidity from COVID-19. Moreover, patients with chronic stable states and even otherwise healthy individuals might sustain acute cardiovascular problems due to COVID-19 infection. This article seeks to review the latest evidence with a view to explaining possible pharmacotherapies for the cardiovascular complications of COVID-19 including acute coronary syndrome, heart failure, myocarditis, arrhythmias, and venous thromboembolism, as well as possible interactions between these medications and those currently administered (or under evaluation) in the treatment of COVID-19. © 2020, Springer Science+Business Media, LLC, part of Springer Nature
The treatment of printing and packaging wastewater by electrocoagulation– flotation: the simultaneous efficacy of critical parameters and economics
In this work, electrocoagulation–flotation (ECF) following sedimentation was applied as a printing and packaging wastewater treatment using four Al electrodes with a parallel monopolar configuration. A sedimentation process was applied after the ECF as a post-treatment phase to remove large pollutants. The simultaneous efficacy of the operating parameters initial color content (1,843.44–12,156.56 ADMI), initial pH (3.56–10.44), current density (6.02–22.18 mA/cm2), and treatment time (5.62–74.38 min) on color and chemical oxygen demand (COD) removal efficiencies were evaluated alongside processing costs. Response surface methodology (RSM) and central composite design (CCD) optimized these key parameters to achieve the highest removal efficiencies and lowest operating costs. Based on the results analyzed by RSM-CCD, using initial color content of 5,576.38 ADMI, initial pH of 7.29, the current density of 18.49 mA/cm2, and treatment time of 59.76 min as optimum operational conditions can result in 97.8% and 92.1% for color and COD removal efficiencies, respectively. At these optimum conditions, operating costs (OPCs), including electrodes material and energy consumption, were 0.07 US/(kg COD removed). The results confirm ECF-sedimentation as a promising and costeffective tool for the treatment of printing and packaging wastewater
An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics
For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas
Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
- …