48 research outputs found

    高エネルギー宇宙粒子現象の研究

    Get PDF

    THE JEM-EUSO MISSION

    Get PDF
    The JEM-EUSO mission explores the origin of the extreme energy cosmic rays (EECRs) above 50EeV and explores the limits of the fundamental physics, through the observations of their arrival directions and energies. It is designed to open a new particle astronomy channel. This superwide-field (60 degrees) telescope with a diameter of about 2.5m looks down from space onto the night sky to detect near UV photons (330 ÷ 400nm, both fluorescent and Cherenkov photons) emitted from the giant air showers produced by EECRs. The arrival direction map with more than five hundred events will tell us the origin of the EECRs and allow us to identify the nearest EECR sources with known astronomical objects. It will allow them to be examined in other astronomical channels. This is likely to lead to an  nderstanding of the acceleration mechanisms perhaps producing discoveries in astrophysics and/or fundamental physics. The comparison of the energy spectra among the spatially resolved individual sources will help to clarify the acceleration/emission mechanism, and also finally confirm the Greisen–Zatsepin–Kuz’min process for the validation of Lorentz invariance up to γ ~ 1011. Neutral components (neutrinos and gamma rays) can also be detected as well, if their fluxes are high enough. The JEM-EUSO mission is planned to be launched by a H2B rocket about 2017 and transferred to ISS by H2 Transfer Vehicle (HTV). It will be attached to the Exposed Facility external experiment platform of “KIBO”

    高エネルギー粒子などによる大気発光現象の研究

    Get PDF

    Research and Design of a Routing Protocol in Large-Scale Wireless Sensor Networks

    Get PDF
    无线传感器网络,作为全球未来十大技术之一,集成了传感器技术、嵌入式计算技术、分布式信息处理和自组织网技术,可实时感知、采集、处理、传输网络分布区域内的各种信息数据,在军事国防、生物医疗、环境监测、抢险救灾、防恐反恐、危险区域远程控制等领域具有十分广阔的应用前景。 本文研究分析了无线传感器网络的已有路由协议,并针对大规模的无线传感器网络设计了一种树状路由协议,它根据节点地址信息来形成路由,从而简化了复杂繁冗的路由表查找和维护,节省了不必要的开销,提高了路由效率,实现了快速有效的数据传输。 为支持此路由协议本文提出了一种自适应动态地址分配算——ADAR(AdaptiveDynamicAddre...As one of the ten high technologies in the future, wireless sensor network, which is the integration of micro-sensors, embedded computing, modern network and Ad Hoc technologies, can apperceive, collect, process and transmit various information data within the region. It can be used in military defense, biomedical, environmental monitoring, disaster relief, counter-terrorism, remote control of haz...学位:工学硕士院系专业:信息科学与技术学院通信工程系_通信与信息系统学号:2332007115216

    Radiation test for electric parts of EUSO Photo Detector Module

    No full text
    The EUSO telescope will be irradiated with space radiation for 5 years while on a low earth orbit. Many parts of the telescope are of a new design and have no data regarding radiation damage. In order to investigate the effects of radiation damage to the electric parts while in a low earth orbit, photodetector modules (PDM) and glass windows for the Multi-Anode Photo-Multiplier Tubes (MAPMT) in the telescope were irradiated with medium energy (70 MeV) proton beams from an accelerator at the National Institute of Radiological Sciences (NIRS) in Japan. Based on these results, the capability of these parts when exposed to an actual space radiation environment after 5 years can be estimated

    Multi-channel High Voltage Power Supply System for the Focal

    No full text
    The focal surface detector of the EUSO telescope consists of a few hundred thousand pixels of photodetectors which are assembled to about 150 photodetector modules (PDM). Multi-channel high voltage power supply (HV PS) system for the MAPMTs used for the detector has been developed. Individual HV PS is installed in each PDM. This system will be used in outer space for 3 years at high altitude of about 420 km. Therefore, various crucial conditions are imposed. Design concept of the HV PS system and some test results are described

    地球を観て宇宙を知る"地文台"JEM-EUSOミッション

    No full text
    corecore