261 research outputs found

    Sensitivity analyses of OH missing sinks over Tokyo metropolitan area in the summer of 2007

    Get PDF
    OH reactivity is one of key indicators which reflect impacts of photochemical reactions in the atmosphere. An observation campaign has been conducted in the summer of 2007 at the heart of Tokyo metropolitan area to measure OH reactivity. The total OH reactivity measured directly by the laser-induced pump and probe technique was higher than the sum of the OH reactivity calculated from concentrations and reaction rate coefficients of individual species measured in this campaign. And then, three-dimensional air quality simulation has been conducted to evaluate the simulation performance on the total OH reactivity including "missing sinks", which correspond to the difference between the measured and calculated total OH reactivity. The simulated OH reactivity is significantly underestimated because the OH reactivity of volatile organic compounds (VOCs) and missing sinks are underestimated. When scaling factors are applied to input emissions and boundary concentrations, a good agreement is observed between the simulated and measured concentrations of VOCs. However, the simulated OH reactivity of missing sinks is still underestimated. Therefore, impacts of unidentified missing sinks are investigated through sensitivity analyses. In the cases that unknown secondary products are assumed to account for unidentified missing sinks, they tend to suppress formation of secondary aerosol components and enhance formation of ozone. In the cases that unidentified primary emitted species are assumed to account for unidentified missing sinks, a variety of impacts may be observed, which could serve as precursors of secondary organic aerosols (SOA) and significantly increase SOA formation. Missing sinks are considered to play an important role in the atmosphere over Tokyo metropolitan area

    Seasonal variation of carbon monoxide in northern Japan: Fourier transform IR measurements and source-labeled model calculations

    Get PDF
    Tropospheric carbon monoxide (CO) was measured throughout 2001 using groundbased Fourier transform IR (FTIR) spectrometers at Moshiri 44.4N and Rikubetsu 43.5N) observatories in northern Japan, which are separated by 150 km. Seasonal and day-to-day variations of CO are studied using these data, and contributions from various CO sources are evaluated using three-dimensional global chemistry transport model (GEOS-CHEM) calculations. Seasonal maximum and minimum FTIR-derived tropospheric CO amounts occurred in April and September, respectively. The ratio of partial column amounts between the 0–4 and 0–12 km altitude ranges is found to be slightly greater in early spring. The GEOS-CHEM model calculations generally reproduce these observed features. Source-labeled CO model calculations suggest that the observed seasonal variation is caused by seasonal contributions from various sources, in addition to a seasonal change in chemical CO loss by OH. Changes in meteorological fields largely control the relative importance of various source contributions. The contributions from fossil fuel (FF) combustion in Asia and photochemical CO production have the greatest yearly averaged contribution at 1 km among the CO sources (31% each). The Asian FF contribution increases from winter to summer, because weak southwesterly wind in summer brings more Asian pollutants to the observation sites. The seasonal variation from photochemical CO production is small (±17% at 1 km), likely because of concurrent increases (decreases) of photochemical production and loss rates in summer (winter), with the largest contribution between August and December. The contribution from intercontinental transport of European FF combustion CO is found to be comparable to that of Asian FF sources in winter. Northwesterly wind around the Siberian high in this season brings pollutants from Europe directly to Japan, in addition to southward transport of accumulated pollution from higher latitudes. The influences are generally greater at lower altitudes, resulting in a vertical gradient in the CO profile during winter. The model underestimates total CO by 12–14% between March and June. Satellite-derived fire-count data and the relationship between FTIR-derived HCN and CO amounts are generally consistent with biomass burning influences, which could have been underestimated by the model calculations

    Technical Note: Formal blind intercomparison of HO<sub>2</sub> measurements in the atmosphere simulation chamber SAPHIR during the HOxComp campaign

    Get PDF
    Hydroperoxy radical (HO<sub>2</sub>) concentrations were measured during the formal blind intercomparison campaign HOxComp carried out in Jülich, Germany, in 2005. Three instruments detected HO<sub>2</sub> via chemical conversion to hydroxyl radicals (OH) and subsequent detection of the sum of OH and HO<sub>2</sub> by laser induced fluorescence (LIF). All instruments were based on the same detection and calibration scheme. Because measurements by a MIESR instrument failed during the campaign, no absolute reference measurement was available, so that the accuracy of individual instruments could not be addressed. Instruments sampled ambient air for three days and were attached to the atmosphere simulation chamber SAPHIR during the second part of the campaign. Six experiments of one day each were conducted in SAPHIR, where air masses are homogeneously mixed, in order to investigate the performance of instruments and to determine potential interferences of measurements under well-controlled conditions. Linear correlation coefficients (<i>R</i><sup>2</sup>) between measurements of the LIF instruments are generally high and range from 0.82 to 0.98. However, the agreement between measurements is variable. The regression analysis of the entire data set of measurements in SAPHIR yields slopes between 0.69 to 1.26 and intercepts are smaller than typical atmospheric daytime concentrations (less than 1 pptv). The quality of fit parameters improves significantly, when data are grouped into data subsets of similar water vapor concentrations. Because measurements of LIF instruments were corrected for a well-characterized water dependence of their sensitivities, this indicates that an unknown factor related to water vapor affected measurements in SAPHIR. Measurements in ambient air are also well-correlated, but regression parameters differ from results obtained from SAPHIR experiments. This could have been caused by differences in HO<sub>2</sub> concentrations in the sampled air at the slightly different locations of instruments

    Observations of glyoxal and formaldehyde as metrics for the anthropogenic impact on rural photochemistry

    Get PDF
    We present simultaneous fast, in-situ measurements of formaldehyde and glyoxal from two rural campaigns, BEARPEX 2009 and BEACHON-ROCS, both located in Pinus Ponderosa forests with emissions dominated by biogenic volatile organic compounds (VOCs). Despite considerable variability in the formaldehyde and glyoxal concentrations, the ratio of glyoxal to formaldehyde, R&lt;sub&gt;GF&lt;/sub&gt;, displayed a very regular diurnal cycle over nearly 2 weeks of measurements. The only deviations in R&lt;sub&gt;GF&lt;/sub&gt; were toward higher values and were the result of a biomass burning event during BEARPEX 2009 and very fresh anthropogenic influence during BEACHON-ROCS. Other rapid changes in glyoxal and formaldehyde concentrations have hardly any affect on R&lt;sub&gt;GF&lt;/sub&gt; and could reflect transitions between low and high NO regimes. The trend of increased R&lt;sub&gt;GF&lt;/sub&gt; from both anthropogenic reactive VOC mixtures and biomass burning compared to biogenic reactive VOC mixtures is robust due to the short timescales over which the observed changes in R&lt;sub&gt;GF&lt;/sub&gt; occurred. Satellite retrievals, which suggest higher R&lt;sub&gt;GF&lt;/sub&gt; for biogenic areas, are in contrast to our observed trends. It remains important to address this discrepancy, especially in view of the importance of satellite retrievals and in situ measurements for model comparison. In addition, we propose that R&lt;sub&gt;GF&lt;/sub&gt; represents a useful metric for biogenic or anthropogenic reactive VOC mixtures and, in combination with absolute concentrations of glyoxal and formaldehyde, furthermore represents a useful metric for the extent of anthropogenic influence on overall reactive VOC processing via NO&lt;sub&gt;x&lt;/sub&gt;. In particular, R&lt;sub&gt;GF&lt;/sub&gt; yields information about not simply the VOCs dominating reactivity in an airmass, but the VOC processing itself that is directly coupled to ozone and secondary organic aerosol production

    Placental syncytiotrophoblast constitutes a major barrier to vertical transmission of Listeria monocytogenes.

    Get PDF
    Listeria monocytogenes is an important cause of maternal-fetal infections and serves as a model organism to study these important but poorly understood events. L. monocytogenes can infect non-phagocytic cells by two means: direct invasion and cell-to-cell spread. The relative contribution of each method to placental infection is controversial, as is the anatomical site of invasion. Here, we report for the first time the use of first trimester placental organ cultures to quantitatively analyze L. monocytogenes infection of the human placenta. Contrary to previous reports, we found that the syncytiotrophoblast, which constitutes most of the placental surface and is bathed in maternal blood, was highly resistant to L. monocytogenes infection by either internalin-mediated invasion or cell-to-cell spread. Instead, extravillous cytotrophoblasts-which anchor the placenta in the decidua (uterine lining) and abundantly express E-cadherin-served as the primary portal of entry for L. monocytogenes from both extracellular and intracellular compartments. Subsequent bacterial dissemination to the villous stroma, where fetal capillaries are found, was hampered by further cellular and histological barriers. Our study suggests the placenta has evolved multiple mechanisms to resist pathogen infection, especially from maternal blood. These findings provide a novel explanation why almost all placental pathogens have intracellular life cycles: they may need maternal cells to reach the decidua and infect the placenta
    corecore