27 research outputs found

    イショク イリョウ ノ ゲンジョウ ト スイシン ニ ムケテ ノ トリクミ

    Get PDF
    Ten years have passed since the Organ Transplantation Law was enacted on October 16, 1997.However, to date, there have only been 67 organ transplantation cases from brain-dead patients inJapan. In addition, there has been no increase in the number of kidney transplants from cardiacarrest patients, even though it has been allowed before the start of the Organ Transplantation Law.Judging from the possession rate of the organ donation decision card reported by the CabinetOffice and Japan Organ Transplant Network, people’s intent to donate has not been fully utilized.In Tokushima Prefecture, in order to increase the number of card possession and to utilize betterthe intent of donors and their families, we have made an original organ donation decision card and abrochure to confirm their donation intentions

    Differential profiling studies of N‐linked glycoproteins in glioblastoma cancer stem cells upon treatment with γ‐secretase inhibitor

    Full text link
    We have recently demonstrated that Notch pathway blockade by γ‐secretase inhibitor (GSI) depletes cancer stem cells (CSCs) in Glioblastoma Multiforme (GBM) through reduced proliferation and induced apoptosis. However, the detailed mechanism by which the manipulation of Notch signal induces alterations on post‐translational modifications such as glycosylation has not been investigated. Herein, we present a differential profiling work to detect the change of glycosylation pattern upon drug treatment in GBM CSCs. Rapid screening of differential cell surface glycan structures has been performed by lectin microarray on live cells followed by the detection of N‐linked glycoproteins from cell lysates using multi‐lectin chromatography and label‐free quantitative mass spectrometry analysis. A total of 51 and 52 glycoproteins were identified in the CSC‐ and GSI‐treated groups, respectively, filtered by a combination of decoy database searching and Trans‐Proteomic Pipeline (TPP) processing. Although no significant changes were detected from the lectin microarray experiment, 7 differentially expressed glycoproteins with high confidence were captured after the multi‐lectin column including key enzymes involved in glycan processing. Functional annotations of the altered glycoproteins suggest a phenotype transformation of CSCs toward a less tumorigenic form upon GSI treatment.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87140/1/4021_ftp.pd

    CUL2-mediated clearance of misfolded TDP-43 is paradoxically affected by VHL in oligodendrocytes in ALS

    Get PDF
    The molecular machinery responsible for cytosolic accumulation of misfolded TDP-43 in amyotrophic lateral sclerosis (ALS) remains elusive. Here we identified a cullin-2 (CUL2) RING complex as a novel ubiquitin ligase for fragmented forms of TDP-43. The von Hippel Lindau protein (VHL), a substrate binding component of the complex, preferentially recognized misfolded TDP-43 at Glu246 in RNA-recognition motif 2. Recombinant full-length TDP-43 was structurally fragile and readily cleaved, suggesting that misfolded TDP-43 is cleared by VHL/CUL2 in a step-wise manner via fragmentation. Surprisingly, excess VHL stabilized and led to inclusion formation of TDP-43, as well as mutant SOD1, at the juxtanuclear protein quality control center. Moreover, TDP-43 knockdown elevated VHL expression in cultured cells, implying an aberrant interaction between VHL and mislocalized TDP-43 in ALS. Finally, cytoplasmic inclusions especially in oligodendrocytes in ALS spinal cords were immunoreactive to both phosphorylated TDP-43 and VHL. Thus, our results suggest that an imbalance in VHL and CUL2 may underlie oligodendrocyte dysfunction in ALS, and highlight CUL2 E3 ligase emerges as a novel therapeutic potential for ALS

    Artificial Nine Zinc-Finger Peptide with 30-Base Pair Binding Sites (BIOORGANIC CHEMISTRY-Bioactive Chemistry)

    Get PDF
    Newly designed zinc-finger peptide Sp1ZF9 containing nine Cys2-His2 type motifs has been manipulated. The DNA binding property of Sp1ZF9 was compared with those of native three zinc-finger Sp1(530-623) and artificial six zinc-finger Sp1ZF6 peptides. Although the equilibrium time was less than 0.5 hr for Sp1(530-623)-DNA complex, Sp1ZF6 and Sp1ZF9 required approximately 48 and 72 hrs respectively for full complex formation. Evidently, the footprinting analysis demonstrated that Sp1ZF9 and Sp1ZF6 bind at least 27 and 18 contiguous base pairs of DNA sequence, respectively. Sp1ZF9 showed two step bindings to DNA, namely first the recognition of GC (5'-GGG-GCG-GGGCC-3' ) sequence by the N-terminal Sp1 domain and next the recognition of the corresponding target sequences by the middle and C-terminal Sp1 domains. In contrast with unimolecular binding of Sp1ZF9 and Sp1ZF6, two Sp1(530-623) molecules bind to one GCIII (5'-GGG-GCG-GGG-GGG-GCG-GGG-GGG-GCG-GGGCC-3') site region. Of special interest is the fact that new nine zinc-finger peptide Sp1ZF9 can bind to DNA sequence of approximately 30-base pairs. Such multi zinc-finger peptides may be useful as genome-specific transcriptional switches in future

    Hyperglycemia in the early stages of type 1 diabetes accelerates gastric emptying through increased networks of interstitial cells of Cajal.

    No full text
    Gastric emptying (GE) can be either delayed or accelerated in diabetes mellitus (DM). However, most research has focused on delayed GE mediated by a chronic hyperglycemic condition in DM. As such, the function of GE in the early stages of DM is not well understood. Interstitial cells of Cajal (ICC) are pacemaker cells in the gastrointestinal tract. In the present study, we investigated changes in GE and ICC networks in the early stages of DM using a streptozotocin-induced type 1 diabetic mouse model. The changes in GE were measured by the 13C-octanoic acid breath test. ICC networks were immunohistochemically detected by an antibody for c-Kit, a specific marker for ICC. Our results showed that GE in type 1 DM was significantly accelerated in the early stages of DM (2-4 weeks after onset). In addition, acute normalization of blood glucose levels by a single administration of insulin did not recover normal GE. ICC networks of the gastric antrum were significantly increased in DM and were not affected by the acute normalization of blood glucose. In conclusion, our results suggest that GE is accelerated in the early stages of DM, and it is associated with increased ICC networks. This mechanism may help to clarify a link between the onset of DM and GE disorders

    Transcriptome analysis of mesenchymal stromal cells of the large and small intestinal smooth muscle layers reveals a unique gastrontestinal stromal signature

    No full text
    Mesenchymal stromal cells in the muscle layer of the large intestine are essential for the regulation of intestinal motility. They form electrogenic syncytia with the smooth muscle and interstitial cells of Cajal (ICCs) to regulate smooth muscle contraction. Mesenchymal stromal cells are present in the muscle layer throughout the gastrointestinal tract. However, their area-specific characteristics remain ambiguous.In this study, we compared mesenchymal stromal cells from the large and small intestinal muscle layers. Histological analysis using immunostaining showed that the cells in the large and small intestines were morphologically distinct. We established a method to isolate mesenchymal stromal cells from wild-type mice with platelet-derived growth factor receptor-alpha (PDGFRα) as a marker on the cell surface and performed RNAseq. Transcriptome analysis revealed that PDGFRα+ cells in the large intestine exhibited increased expression levels of collagen-related genes, whereas PDGFRα+ cells in the small intestine exhibited increased expression levels of channel/transporter genes, including Kcn genes. These results suggest that mesenchymal stromal cells differ morphologically and functionally depending on gastrointestinal tract. Further investigations of the cellular properties of mesenchymal stromal cells in the gastrointestinal tract will aid in optimizing methods for the prevention and treatment of gastrointestinal diseases

    CUL2-mediated clearance of misfolded TDP-43 is paradoxically affected by VHL in oligodendrocytes in ALS.

    Get PDF
    神経難病・筋萎縮性側索硬化症の病原蛋白質を分解する新たな仕組みを発見 -ALSの新たな病態の発見と分子標的治療の可能性を開く-. 京都大学プレスリリース. 2016-01-12.The molecular machinery responsible for cytosolic accumulation of misfolded TDP-43 in amyotrophic lateral sclerosis (ALS) remains elusive. Here we identified a cullin-2 (CUL2) RING complex as a novel ubiquitin ligase for fragmented forms of TDP-43. The von Hippel Lindau protein (VHL), a substrate binding component of the complex, preferentially recognized misfolded TDP-43 at Glu246 in RNA-recognition motif 2. Recombinant full-length TDP-43 was structurally fragile and readily cleaved, suggesting that misfolded TDP-43 is cleared by VHL/CUL2 in a step-wise manner via fragmentation. Surprisingly, excess VHL stabilized and led to inclusion formation of TDP-43, as well as mutant SOD1, at the juxtanuclear protein quality control center. Moreover, TDP-43 knockdown elevated VHL expression in cultured cells, implying an aberrant interaction between VHL and mislocalized TDP-43 in ALS. Finally, cytoplasmic inclusions especially in oligodendrocytes in ALS spinal cords were immunoreactive to both phosphorylated TDP-43 and VHL. Thus, our results suggest that an imbalance in VHL and CUL2 may underlie oligodendrocyte dysfunction in ALS, and highlight CUL2 E3 ligase emerges as a novel therapeutic potential for ALS
    corecore