1,336 research outputs found

    Vortex profiles and vortex interactions at the electroweak crossover

    Get PDF
    Local correlations of Z-vortex operators with gauge and Higgs fields (lattice quantum vortex profiles) as well as vortex two-point functions are studied in the crossover region near a Higgs mass of 100 GeV within the 3D SU(2) Higgs model. The vortex profiles resemble certain features of the classical vortex solutions in the continuum. The vortex-vortex interactions are analogous to the interactions of Abrikosov vortices in a type-I superconductor.Comment: talk at LATTICE99(electroweak), 3 pages and 5 EPS figure

    Hot electroweak matter near to the endpoint of the phase transition

    Get PDF
    The electroweak phase transition is investigated near to its endpoint in the framework of an effective three-dimensional model. We measure the very weak interface tension with the tunneling correlation length method. First results for the mass spectrum and the corresponding wave functions in the symmetric phase are presented.Comment: 3 pages, 5 figures, uses espcrc2.sty, contribution to LATTICE9

    Detailed Phase Transition Study at M_H <= 70 GeV in a 3-dimensional SU(2)SU(2)--Higgs Model

    Full text link
    We study the electroweak phase transition in an effective 3-dimensional theory for a Higgs mass of about 70 GeV by Monte Carlo simulations. The transition temperature and jumps of order parameters are obtained and extrapolated to the continuum using multi-histogram techniques and finite size analysis.Comment: Talk presented at LATTICE96(electroweak), 4 pages, 5 figure

    Dimensional Reduction, Hard Thermal Loops and the Renormalization Group

    Full text link
    We study the realization of dimensional reduction and the validity of the hard thermal loop expansion for lambda phi^4 theory at finite temperature, using an environmentally friendly finite-temperature renormalization group with a fiducial temperature as flow parameter. The one-loop renormalization group allows for a consistent description of the system at low and high temperatures, and in particular of the phase transition. The main results are that dimensional reduction applies, apart from a range of temperatures around the phase transition, at high temperatures (compared to the zero temperature mass) only for sufficiently small coupling constants, while the HTL expansion is valid below (and rather far from) the phase transition, and, again, at high temperatures only in the case of sufficiently small coupling constants. We emphasize that close to the critical temperature, physics is completely dominated by thermal fluctuations that are not resummed in the hard thermal loop approach and where universal quantities are independent of the parameters of the fundamental four-dimensional theory.Comment: 20 pages, 13 eps figures, uses epsfig and pstrick

    On finite-temperature holographic QCD in the Veneziano limit

    Get PDF
    Holographic models in the T=0 universality class of QCD in the limit of large number N_c of colors and N_f massless fermion flavors, but constant ratio x_f=N_f/N_c, are analyzed at finite temperature. The models contain a 5-dimensional metric and two scalars, a dilaton sourcing TrF^2 and a tachyon dual to \bar qq. The phase structure on the T,x_f plane is computed and various 1st order, 2nd order transitions and crossovers with their chiral symmetry properties are identified. For each x_f, the temperature dependence of p/T^4 and the quark-antiquark -condensate is computed. In the simplest case, we find that for x_f up to the critical x_c\sim 4 there is a 1st order transition on which chiral symmetry is broken and the energy density jumps. In the conformal window x_c<x_f<11/2, there is only a continuous crossover between two conformal phases. When approaching x_c from below, x_f\to x_c, temperature scales approach zero as specified by Miransky scaling.Comment: 66 pages, 29 figure

    Isotropic AdS/CFT fireball

    Full text link
    We study the AdS/CFT thermodynamics of the spatially isotropic counterpart of the Bjorken similarity flow in d-dimensional Minkowski space with d>=3, and of its generalisation to linearly expanding d-dimensional Friedmann-Robertson-Walker cosmologies with arbitrary values of the spatial curvature parameter k. The bulk solution is a nonstatic foliation of the generalised Schwarzschild-AdS black hole with a horizon of constant curvature k. The boundary matter is an expanding perfect fluid that satisfies the first law of thermodynamics for all values of the temperature and the spatial curvature, but it admits a description as a scale-invariant fluid in local thermal equilibrium only when the inverse Hawking temperature is negligible compared with the spatial curvature length scale. A Casimir-type term in the holographic energy-momentum tensor is identified from the threshold of black hole formation and is shown to take different forms for k>=0 and k<0.Comment: 20 pages. v3: typos corrected. Published versio

    The endpoint of the electroweak phase transition

    Get PDF
    The 3d SU(2)-Higgs model is used to find the critical Higgs mass above which the first order phase transition ends. One method is focused on the disappearance of the two-state signal of the scalar condensate (vanishing of the latent heat). Another method is based on the analysis of Lee-Yang zeroes of the partition function which allows to characterise the change from first order transition into an analytical crossover.Comment: 3 pages, 5 figures, uses espcrc2.sty, contribution to LATTICE9

    Where the electroweak phase transition ends

    Get PDF
    We give a more precise characterisation of the end of the electroweak phase transition in the framework of the effective 3d SU(2)--Higgs lattice model than has been given before. The model has now been simulated at gauge couplings beta_G=12 and 16 for Higgs masses M_H^*=70, 74, 76 and 80 GeV up to lattices 96^3 and the data have been used for reweighting. The breakdown of finite volume scaling of the Lee-Yang zeroes indicates the change from a first order transition to a crossover at lambda_3/g_3^2=0.102(2) in rough agreement with results of Karsch et al (hep-lat/9608087) at \beta_G=9 and smaller lattices. The infinite volume extrapolation of the discontinuity Delta /g_3^2 turns out to be zero at lambda_3/g_3^2=0.107(2) being an upper limit. We comment on the limitations of the second method.Comment: RevTeX, 19 pages, 11 figures, 2 tables; additional MC-data near the endpoint considere

    The pressure of hot QCD up to g^6 ln(1/g)

    Full text link
    The free energy density, or pressure, of QCD has at high temperatures an expansion in the coupling constant g, known so far up to order g^5. We compute here the last contribution which can be determined perturbatively, g^6 ln(1/g), by summing together results for the 4-loop vacuum energy densities of two different three-dimensional effective field theories. We also demonstrate that the inclusion of the new perturbative g^6 ln(1/g) terms, once they are summed together with the so far unknown perturbative and non-perturbative g^6 terms, could potentially extend the applicability of the coupling constant series down to surprisingly low temperatures.Comment: 18 pages. Small clarifications added. To appear in Phys.Rev.
    • …
    corecore