11 research outputs found

    Nanobacteria: Fact or Fiction? Characteristics, Detection and Medical Importance of Novel Self-Replicating, Calcifying Nanoparticles

    Get PDF
    There is some debate in microbiology as to whether Nanobacteria (NB) are alive. This paper reviews some aspects of NB. In summary, Nanobacteria is a perfect model for studying biogenic mineralization/calcification because NB a) are self-replicating particles and have less complicated metabolic pathways b) accumulate calcium and phosphate under physiological conditions, c)produce a calcium phosphate mineral similar to bone, d) exist in physical conditions (pH, gravity, temperature, etc) that are easy to manipulate, and which can be replicated for the physiological model

    Persistent Seroconversion after Accidental Eye Exposure to Calcifying Nanoparticles

    Get PDF
    Biosafety of nanomaterials has attracted much attention recently. We report here a case where accidental human eye exposure to biogenic nanosized calcium phosphate in the form of calcifying nanoparticles (CNP) raised a strong IgG immune response against proteins carried by CNP. The antibody titer has persisted over ten years at the high level. The IgG was detected by ELISA using CNPs propagated in media containing bovine and human serum as antigen. The exposure incident occurred to a woman scientist (WS) at a research laboratory in Finland at 1993. CNP, also termed "nanobacteria", is a unique self-replicating agent that has not been fully characterized and no data on biohazards were available at that time. Before the accident, her serum samples were negative for both CNP antigen and anti-CNP antibody using specific ELISA tests (Nanobac Oy, Kuopio, Finland). The accident occurred while WS was harvesting CNP cultures. Due to a high pressure in pipetting, CNP pellet splashed into her right eye. Both eyes were immediately washed with water and saline. The following days there was irritation and redness in the right eye. These symptoms disappeared within two weeks without any treatment. Three months after the accident, blood and urine samples of WS were tested for CNP cultures (2), CNP-specific ELISA tests, and blood cell counts. Blood cell counts were normal, CNP antigen and culture tests were negative. A high IgG anti-CNP antibody titer was detected (see Figure). The antibodies of this person have been used thereafter as positive control and standard in ELISA manufacturing (Nano-Sero IgG ELISA, Nanobac Oy, Kuopio, Finland)

    Association between Randall's Plaque and Calcifying Nanoparticles

    Get PDF
    Randall's plaques, first described by Alexander Randall in the 1930s, are small subepithelial calcifications in the renal papillae (RP) that also extend deeply into the renal medulla. Despite the strong correlation between the presence of these plaques and the formation of renal stones, the precise origin and pathogenesis of Randall s plaque formation remain elusive. The discovery of calcifying nanoparticles (CNP) and their detection in many calcifying processes of human tissues has raised hypotheses about their possible involvement in renal stone formation. We collected RP and blood samples from 17 human patients who had undergone laparoscopic nephrectomy due to neoplasia. Homogenized RP tissues and serum samples were cultured for CNP. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis were performed on fixed RP samples. Immunohistochemical staining (IHS) was applied on the tissue samples using CNP-specific monoclonal antibody (mAb). Randall s plaques were visible on gross inspection in 11 out of 17 collected samples. Cultures of all serum samples and 13 tissue homogenates had CNP growth within 4 weeks. SEM revealed spherical apatite formations in 14 samples, with calcium and phosphate peaks detected by EDS analysis. IHS was positive in 9 out of 17 samples. A strong link was found between the presence of Randall s plaques and the detection of CNP, also referred to as nanobacteria. These results suggest new insights into the etiology of Randall's plaque formation, and will help us understand the pathogenesis of stone formation. Further studies on this topic may lead us to new approaches on early diagnosis and novel medical therapies of kidney stone formation

    Pitfalls in Detection of Novel Nanoorganisms

    No full text

    A Preliminary Analysis of Calcifying Particles in the Serum and Prostates of Patients with Prostatic Inflammation

    No full text
    Chronic diseases of the prostate such as benign prostatic hyperplasia (BPH) & chronic pelvic pain syndrome (CPPS) have associated findings of chronic inflammation, despite a lack of causal relationship. Numerous attempts to define an infectious agent responsible for the clinical findings have been inconsistent. The possibility of an infectious agent, that has not been uncovered with routine culturing methods, forms the basis for this study. Serum from 940 healthy Finnish men were compared with serum from 40 Crohn's, 40 path dx prostatitis, & 40 with path dx carcinoma, using an enzyme-linked immunosorbant assay (ELISA), to detect antigens specific to Nanobacteria(NB) utilizing monoclonal antibodies (Ab) 5/3 and 8D10. This ELISA has not been validated for detecting NB-associated with clinical prostatic disease, yet cross-reactivity with other bacterial species is low. Immunohistochemistry was performed on de-paraffinized prostatic tissue slides, de-calcified with EDTA and stained with the DAKO Catalyzed Signal Amplification kit, employing 8D10 as the primary (target/antigen-detecting) Ab. The mean (plus or minus SD) & median concentrations of NB antigen (U/50 L) were 379.59 (plus or minus 219.28) & 640.00 for patients with prostatitis (BPH) vs 3.31 (plus or minus 3.55) & 2.94 for prostate adenocarcinoma, 1.88 (plus or minus 2.94) & 0.80 for Crohn's disease, & 7.43 (plus or minus 25.57) & 0.00 for patients with no clinical prostatic disease. Unpaired t-tests revealed statistically significant differences between the prostatitis (BPH) sera & each of the other groups with p less than 0.005, but no differences between the other groups themselves. Preliminary studies with immunohistochemistry & 3-D confocal microscopy reveal 16/24 tissue sections + for NB Ag in BPH vs. only 2/22 tissue sections with prostate cancer. The preliminary findings of this serum screening study suggest that NB antigen may be commonly found in the serum of patients with the pathological diagnosis of prostatitis. Preliminary immunohistologic studies, suggest that NB may be found within the gland itself at a higher rate in patients with BPH relative to patients with adenocarcinoma, however confirmatory studies with a more specific ELISA technique, primary cultures, & with larger numbers of patients in a prospective design are required to determine if 1) NB are a causative organism for clinical hyperplastic and inflammatory disease, & if 2) serological testing can be used to discriminate patients with nanobacterial-associated prostatic disease
    corecore