9 research outputs found

    Postoperative delirium is associated with increased plasma neurofilament light

    Get PDF
    While delirium is associated with cognitive decline and dementia, there is limited evidence to support causality for this relationship. Clarification of how delirium may cause cognitive decline, perhaps through evidence of contemporaneous neuronal injury, would enhance plausibility for a causal relationship. Dose-dependence of neuronal injury with delirium severity would further enhance the biological plausibility for this relationship. We tested whether delirium is associated with neuronal injury in 114 surgical patients recruited to a prospective biomarker cohort study. Patients underwent perioperative testing for changes in neurofilament light, a neuronal injury biomarker, as well as a panel of 10 cytokines, with contemporaneous assessment of delirium severity and incidence. A subset of patients underwent preoperative MRI. Initially we confirmed prior reports that neurofilament light levels correlated with markers of neurodegeneration [hippocampal volume (ΔR2 = 0.129, P = 0.015)] and white matter changes including fractional anisotropy of white matter (ΔR2 = 0.417, P < 0.001) with similar effects on mean, axial and radial diffusivity) in our cohort and that surgery was associated with increasing neurofilament light from preoperative levels [mean difference (95% confidence interval, CI) = 0.240 (0.178, 0.301) log10 (pg/ml), P < 0.001], suggesting putative neuronal injury. Next, we tested the relationship with delirium. Neurofilament light rose more sharply in participants with delirium compared to non-sufferers [mean difference (95% CI) = 0.251 (0.136, 0.367) log10 (pg/ml), P < 0.001]. This relationship showed dose-dependence, such that neurofilament light rose proportionately to delirium severity (ΔR2 = 0.199, P < 0.001). Given that inflammation is considered an important driver of postoperative delirium, next we tested whether neurofilament light, as a potential marker of neurotoxicity, may contribute to the pathogenesis of delirium independent of inflammation. From a panel of 10 cytokines, the pro-inflammatory cytokine IL-8 exhibited a strong correlation with delirium severity (ΔR2 = 0.208, P < 0.001). Therefore, we tested whether the change in neurofilament light contributed to delirium severity independent of IL-8. Neurofilament light was independently associated with delirium severity after adjusting for the change in inflammation (ΔR2 = 0.040, P = 0.038). These data suggest delirium is associated with exaggerated increases in neurofilament light and that this putative neurotoxicity may contribute to the pathogenesis of delirium itself, independent of changes in inflammation

    Postoperative delirium and changes in the blood-brain barrier, neuroinflammation, and cerebrospinal fluid lactate: a prospective cohort study

    No full text
    BACKGROUND: Case-control studies have associated delirium with blood-brain barrier (BBB) permeability. However, this approach cannot determine whether delirium is attributable to high pre-existing permeability or to perioperative changes. We tested whether perioperative changes in cerebrospinal fluid/plasma albumin ratio (CPAR) and plasma S100B were associated with delirium severity. METHODS: Participants were recruited to two prospective cohort studies of non-intracranial surgery (NCT01980511, NCT03124303, and NCT02926417). Delirium severity was assessed using the Delirium Rating Scale-98. Delirium incidence was diagnosed with the 3D-Confusion Assessment Method (3D-CAM) or CAM-ICU (CAM for the ICU). CSF samples from 25 patients and plasma from 78 patients were analysed for albumin and S100B. We tested associations between change in CPAR (n=11) and S100B (n=61) and delirium, blood loss, CSF interleukin-6 (IL-6), and CSF lactate. RESULTS: The perioperative increase in CPAR and S100B correlated with delirium severity (CPAR ρ=0.78, P=0.01; S100B ρ=0.41, P<0.001), delirium incidence (CPAR P=0.012; S100B P<0.001) and CSF IL-6 (CPAR ρ=0.66 P=0.04; S100B ρ=0.75, P=0.025). Linear mixed-effect analysis also showed that decreased levels of S100B predicted recovery from delirium symptoms (P=0.001). Linear regression demonstrated that change in plasma S100B was independently associated with surgical risk, cardiovascular surgery, blood loss, and hypotension. Blood loss also correlated with CPAR (ρ=0.64, P=0.04), S100B (ρ=0.70, P<0.001), CSF lactate (R=0.81, P=0.01), and peak delirium severity (ρ=0.36, P=0.01). CONCLUSION: Postoperative delirium is associated with a breakdown in the BBB. This increased permeability is dynamic and associated with a neuroinflammatory and lactate response. Strategies to mitigate blood loss may protect the BBB

    Optimizing Nitrogen Management in Food and Energy Production and Environmental Protection: Summary Statement from the Second International Nitrogen Conference

    No full text
    Human efforts to produce food and energy are changing the nitrogen (N) cycle of the Earth. Many of these changes are highly beneficial for humans, while others are detrimental to people and the environment. These changes transcend scientific disciplines, geographical boundaries, and political structures. They challenge the creative minds of natural and social scientists, economists, engineers, business leaders, and decision makers. The Second International Nitrogen Conference was designed to facilitate communications among all stakeholders in the “nitrogen community” of the world. The Conference participants’ goal in the years and decades ahead is to encourage every country to make optimal choices about N management in food production and consumption, energy production and use, and environmental protection. Scientific findings and recommendations for decision makers that emerged from the Conference are presented

    Observation of Gravitational Waves from a Binary Black Hole Merger

    No full text
    corecore